On the Structural Properties of the Weight Space~$L_{p(x),\omega}$ for $0 p(x)1$
Matematičeskie zametki, Tome 95 (2014) no. 4, pp. 492-506.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main purpose of this paper is to study the weight space $L_{p(x),\omega}$ for $0 p(x)\nobreak 1$ as well as the topology of this space. Embeddings between different Lebesgue spaces with variable exponent of summability are established. In particular, it is proved that the set of all linear continuous functionals over $L_{p(x),\omega}$ for $0 p(x)\nobreak 1$ consists only of the zero functional.
Keywords: weight space $L_{p(x),\omega}$, Lebesgue space with variable exponent of summability, embedding theorem, Lebesgue measurable function, quasinormed space
Mots-clés : quasi-Banach space.
@article{MZM_2014_95_4_a1,
     author = {R. A. Bandaliev},
     title = {On the {Structural} {Properties} of the {Weight} {Space~}$L_{p(x),\omega}$ for $0< p(x)<1$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {492--506},
     publisher = {mathdoc},
     volume = {95},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a1/}
}
TY  - JOUR
AU  - R. A. Bandaliev
TI  - On the Structural Properties of the Weight Space~$L_{p(x),\omega}$ for $0< p(x)<1$
JO  - Matematičeskie zametki
PY  - 2014
SP  - 492
EP  - 506
VL  - 95
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a1/
LA  - ru
ID  - MZM_2014_95_4_a1
ER  - 
%0 Journal Article
%A R. A. Bandaliev
%T On the Structural Properties of the Weight Space~$L_{p(x),\omega}$ for $0< p(x)<1$
%J Matematičeskie zametki
%D 2014
%P 492-506
%V 95
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a1/
%G ru
%F MZM_2014_95_4_a1
R. A. Bandaliev. On the Structural Properties of the Weight Space~$L_{p(x),\omega}$ for $0< p(x)<1$. Matematičeskie zametki, Tome 95 (2014) no. 4, pp. 492-506. http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a1/

[1] W. Orlicz, “Über konjugierte exponentenfolgen”, Studia Math., 3 (1931), 200–211 | Zbl

[2] H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen, Tokyo, 1950 | MR

[3] H. Nakano, Topology and Topological Linear Spaces, Maruzen, Tokyo, 1951 | MR

[4] J. Musielak, “Orlicz Spaces and Modular Spaces”, Lecture Notes in Math., 1034, Springer-Verlag, Berlin, 1983 | DOI | MR | Zbl

[5] J. Musielak, W. Orlicz, “On modular spaces”, Studia Math., 18 (1959), 49–65 | MR | Zbl

[6] I. I. Sharapudinov, “O topologii prostranstva $\mathscr L^{p(t)}([0,1])$”, Matem. zametki, 26:4 (1979), 613–632 | MR | Zbl

[7] O. Kováčik, J. Rákosník, “On spaces $L^{p(x)}$ and $W^{k,p(x)}$”, Czechoslovak Math. J., 41:4 (1991), 592–618 | MR | Zbl

[8] V. V. Zhikov, “Usrednenie funktsionalov variatsionnogo ischisleniya i teorii uprugosti”, Izv. AN SSSR. Ser. matem., 50:4 (1986), 675–710 | MR | Zbl

[9] L. Diening, P. Harjulehto, P. Hästö, M. R.{u}žička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math., 2017, Springer-Verlag, Berlin, 2011 | DOI | MR | Zbl

[10] I. I. Sharapudinov, “O bazisnosti sistemy Khaara v prostranstve $\mathscr L^{p(t)}([0,1])$ i printsipe lokalizatsii v srednem”, Matem. sb., 130:2 (1986), 275–283 | MR | Zbl

[11] I. I. Sharapudinov, “O ravnomernoi ogranichennosti v $L^p$ $(p=p(x))$ nekotorykh semeistv operatorov svertki”, Matem. zametki, 59:2 (1996), 291–302 | DOI | MR | Zbl

[12] R. A. Bandaliev, “Embedding between variable exponent Lebesgue spaces with measures”, Azerb. J. Math., 2:1 (2012), 119–126 | MR | Zbl

[13] R. A. Bandaliev, “Ob odnom neravenstve v prostranstve Lebega so smeshannoi normoi i s peremennym pokazatelem summiruemosti”, Matem. zametki, 84:3 (2008), 323–333 | DOI | MR | Zbl

[14] N. J. Kalton, “A note on the spaces $L_p$ for $0 p\le 1$”, Proc. Amer. Math. Soc., 56:1 (1976), 199–202 | MR | Zbl