$L_p$-Inequalities for Differences and Derivatives of Positive Order for Functions with Spectrum in the Ball or Spherical Layer
Matematičeskie zametki, Tome 95 (2014) no. 3, pp. 433-444.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove inequalities of Riesz, Bernstein, and Bohr–Favard type in the metric of the spaces $L_p$, $0$, for functions whose spectrum is contained in a closed ball or a closed spherical layer. As an application, a discrete description of Lizorkin–Triebel spaces in terms of coordinate differences of positive order is given.
Keywords: $L_p$-inequality, Riesz-type inequality, Bernstein-type inequality, Bohr–Favard type inequality, $L_p$ space, Lizorkin–Triebel space, functions whose spectrum is contained in a closed ball or a closed spherical layer, Young's inequality.
Mots-clés : Fourier transform
@article{MZM_2014_95_3_a9,
     author = {N. L. Kudryavtsev},
     title = {$L_p${-Inequalities} for {Differences} and {Derivatives} of {Positive} {Order} for {Functions} with {Spectrum} in the {Ball} or {Spherical} {Layer}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {433--444},
     publisher = {mathdoc},
     volume = {95},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a9/}
}
TY  - JOUR
AU  - N. L. Kudryavtsev
TI  - $L_p$-Inequalities for Differences and Derivatives of Positive Order for Functions with Spectrum in the Ball or Spherical Layer
JO  - Matematičeskie zametki
PY  - 2014
SP  - 433
EP  - 444
VL  - 95
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a9/
LA  - ru
ID  - MZM_2014_95_3_a9
ER  - 
%0 Journal Article
%A N. L. Kudryavtsev
%T $L_p$-Inequalities for Differences and Derivatives of Positive Order for Functions with Spectrum in the Ball or Spherical Layer
%J Matematičeskie zametki
%D 2014
%P 433-444
%V 95
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a9/
%G ru
%F MZM_2014_95_3_a9
N. L. Kudryavtsev. $L_p$-Inequalities for Differences and Derivatives of Positive Order for Functions with Spectrum in the Ball or Spherical Layer. Matematičeskie zametki, Tome 95 (2014) no. 3, pp. 433-444. http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a9/

[1] S. N. Bernshtein, “O nailuchshem priblizhenii nepreryvnykh funktsii posredstvom mnogochlenov dannoi stepeni”, Sobranie sochinenii, T. 1, Izd. AN SSSR, M., 1952, 11–104

[2] M. Riesz, “Eine trigonometrische Interpolationsformel und einige Ungleichungen für Polynome”, Deutsche Math. Ver., 23 (1914), 354–368 | Zbl

[3] H. Bohr, “Ein allgemeiner Satz über die Integration eines trigonometrischen Polynoms”, Prace Mat.-Fiz., 43 (1935), 273–288 | Zbl

[4] J. Favard, “Application de la formule sommatoire d`Euler à la démonstration de quelques propriétés extrémales des intégrales des fonctions périodiques ou presque-périodiques”, Mat. Tidsskr. B, København, 1936 (1936), 81–94 | Zbl

[5] S. N. Bernshtein, “Rasprostranenie neravenstva S. B. Stechkina na tselye funktsii konechnoi stepeni”, Dokl. AN SSSR, 60:9 (1948), 1487–1490 | MR | Zbl

[6] S. M. Nikolskii, “Obobschenie odnogo neravenstva S. N. Bernshteina”, Dokl. AN SSSR, 60:9 (1948), 1507–1510 | MR | Zbl

[7] P. I. Lizorkin, “Otsenki trigonometricheskikh integralov i neravenstvo Bernshteina dlya drobnykh proizvodnykh”, Izv. AN SSSR. Ser. matem., 29:1 (1965), 109–126 | MR | Zbl

[8] G. Wilmes, “On Riesz-type inequalities and K-functionals related to Riesz potentials in $\mathbb R^n$”, Numer. Funct. Anal. Optim., 1:1 (1979), 57–77 | DOI | MR | Zbl

[9] Kh. Tribel, Teoriya funktsionalnykh prostranstv, Mir, M., 1986 | MR | Zbl

[10] L. Khermander, Analiz lineinykh differentsialrykh operatorov s chastnymi proizvodnymi. T. 1. Teoriya raspredelenii i analiz Fure, Mir, M., 1986 | MR | Zbl

[11] E. M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality and Oscillatory Integrals, Princeton Math. Ser., 43, Monographs in Harmonic Analysis, III, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl

[12] K. Runovski, H.-J. Schmeisser, “On some extensions of Bernstein's inequality for trigonometric polynomials”, Funct. Approx. Comment. Math., 29 (2001), 125–142 | MR

[13] P. I. Lizorkin, “Obobschennoe liuvillevskoe differentsirovanie i metod multiplikatorov v teorii vlozhenii klassov differentsiruemykh funktsii”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. III, Tr. MIAN SSSR, 105, 1969, 89–167 | MR | Zbl

[14] H. Triebel, Fourier Analysis and Function Spaces, Teubner-Texte zur Mathematik, Teubner Verlag., Leipzig, 1977 | MR | Zbl

[15] R. Taberski, “Estimates for entire functions of exponential type”, Funct. Approx. Comment. Math., 13 (1982), 129–147 | MR | Zbl

[16] I. M. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl

[17] N. L. Kudryavtsev, “Drobnye raznosti i prostranstva Lizorkina–Tribelya”, Matem. zametki, 71:6 (2002), 845–854 | DOI | MR | Zbl

[18] G. A. Kalyabin, “Kharakterizatsiya prostranstv tipa Besova–Lizorkina–Tribelya s pomoschyu obobschennykh raznostei”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. Chast 12, Sbornik rabot, Tr. MIAN SSSR, 181, Nauka, M., 1988, 95–116 | MR | Zbl