$L_p$-Inequalities for Differences and Derivatives of Positive Order for Functions with Spectrum in the Ball or Spherical Layer
Matematičeskie zametki, Tome 95 (2014) no. 3, pp. 433-444

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove inequalities of Riesz, Bernstein, and Bohr–Favard type in the metric of the spaces $L_p$, $0$, for functions whose spectrum is contained in a closed ball or a closed spherical layer. As an application, a discrete description of Lizorkin–Triebel spaces in terms of coordinate differences of positive order is given.
Keywords: $L_p$-inequality, Riesz-type inequality, Bernstein-type inequality, Bohr–Favard type inequality, $L_p$ space, Lizorkin–Triebel space, functions whose spectrum is contained in a closed ball or a closed spherical layer, Young's inequality.
Mots-clés : Fourier transform
@article{MZM_2014_95_3_a9,
     author = {N. L. Kudryavtsev},
     title = {$L_p${-Inequalities} for {Differences} and {Derivatives} of {Positive} {Order} for {Functions} with {Spectrum} in the {Ball} or {Spherical} {Layer}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {433--444},
     publisher = {mathdoc},
     volume = {95},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a9/}
}
TY  - JOUR
AU  - N. L. Kudryavtsev
TI  - $L_p$-Inequalities for Differences and Derivatives of Positive Order for Functions with Spectrum in the Ball or Spherical Layer
JO  - Matematičeskie zametki
PY  - 2014
SP  - 433
EP  - 444
VL  - 95
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a9/
LA  - ru
ID  - MZM_2014_95_3_a9
ER  - 
%0 Journal Article
%A N. L. Kudryavtsev
%T $L_p$-Inequalities for Differences and Derivatives of Positive Order for Functions with Spectrum in the Ball or Spherical Layer
%J Matematičeskie zametki
%D 2014
%P 433-444
%V 95
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a9/
%G ru
%F MZM_2014_95_3_a9
N. L. Kudryavtsev. $L_p$-Inequalities for Differences and Derivatives of Positive Order for Functions with Spectrum in the Ball or Spherical Layer. Matematičeskie zametki, Tome 95 (2014) no. 3, pp. 433-444. http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a9/