Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2014_95_3_a6, author = {J. Dong and H. Chen}, title = {Almost {Split} {Sequences} of the {Quantum} {Double} of a {Finite} {Group}}, journal = {Matemati\v{c}eskie zametki}, pages = {385--399}, publisher = {mathdoc}, volume = {95}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a6/} }
J. Dong; H. Chen. Almost Split Sequences of the Quantum Double of a Finite Group. Matematičeskie zametki, Tome 95 (2014) no. 3, pp. 385-399. http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a6/
[1] S. J. Witherspoon, “The representation ring of the quantum double of a finite group”, J. Algebra, 179:1 (1996), 305–329 | DOI | MR | Zbl
[2] S. Majid, “Doubles of quasitriangular Hopf algebras”, Comm. Algebra, 19:11 (1991), 3061–3073 | DOI | MR | Zbl
[3] M. Auslander, I. Reiten, S. O. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math., 36, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[4] L. A. Lambe, D. E. Radford, “Algebraic aspects of the quantum Yang–Baxter equation”, J. Algebra, 154:1 (1993), 228–288 | DOI | MR | Zbl
[5] U. Oberst, H. J. Schneider, “Über Untergruppen Endlicher Algebraischer Gruppen”, Manuscripta Math., 8:3 (1973), 217–241 | DOI | MR | Zbl
[6] D. E. Radford, “Minimal quasitriangular Hopf algebras”, J. Algebra, 157:2 (1993), 285–315 | DOI | MR | Zbl
[7] M. A. Hennings, “Invariants of links and 3-manifolds obtained from Hopf algebras”, J. London Math. Soc. (2), 54:3 (1996), 594–624 | DOI | MR | Zbl
[8] H. Chen, G. Hiss, “Notes on the Drinfeld double of finite dimensional group algebras”, Algebra Colloq., 19:3 (2012), 483–492 | MR | Zbl
[9] D. G. Higman, “Indecomposable modules at characteristic $p$”, Duke Math. J., 21:2 (1954), 377–381 | DOI | MR | Zbl
[10] G. J. Janusz, “Indecomposable modules of groups with a cyclic Sylow subgroup”, Trans. Amer. Math. Soc., 125:2 (1966), 288–295 | DOI | MR | Zbl
[11] J. Dong, H. Chen, “The Representations of quantum double of dihedral groups”, Algebra Colloq., 20:1 (2013), 95–108 | MR | Zbl