Almost Split Sequences of the Quantum Double of a Finite Group
Matematičeskie zametki, Tome 95 (2014) no. 3, pp. 385-399.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $k$ be a field of characteristic $p>0$, and $G$ be a finite group of order divisible by $p$. We prove that the almost split sequences of the quantum double $D(kG)$ can be constructed from those of group algebras, where the groups run over all centralizer subgroups of representatives of conjugate classes of $G$. As a special case, we give an application to the quantum double of dihedral groups.
Keywords: quantum double, dihedral group, almost split sequence, Auslander–Reiten quiver.
@article{MZM_2014_95_3_a6,
     author = {J. Dong and H. Chen},
     title = {Almost {Split} {Sequences} of the {Quantum} {Double} of a {Finite} {Group}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {385--399},
     publisher = {mathdoc},
     volume = {95},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a6/}
}
TY  - JOUR
AU  - J. Dong
AU  - H. Chen
TI  - Almost Split Sequences of the Quantum Double of a Finite Group
JO  - Matematičeskie zametki
PY  - 2014
SP  - 385
EP  - 399
VL  - 95
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a6/
LA  - ru
ID  - MZM_2014_95_3_a6
ER  - 
%0 Journal Article
%A J. Dong
%A H. Chen
%T Almost Split Sequences of the Quantum Double of a Finite Group
%J Matematičeskie zametki
%D 2014
%P 385-399
%V 95
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a6/
%G ru
%F MZM_2014_95_3_a6
J. Dong; H. Chen. Almost Split Sequences of the Quantum Double of a Finite Group. Matematičeskie zametki, Tome 95 (2014) no. 3, pp. 385-399. http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a6/

[1] S. J. Witherspoon, “The representation ring of the quantum double of a finite group”, J. Algebra, 179:1 (1996), 305–329 | DOI | MR | Zbl

[2] S. Majid, “Doubles of quasitriangular Hopf algebras”, Comm. Algebra, 19:11 (1991), 3061–3073 | DOI | MR | Zbl

[3] M. Auslander, I. Reiten, S. O. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math., 36, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[4] L. A. Lambe, D. E. Radford, “Algebraic aspects of the quantum Yang–Baxter equation”, J. Algebra, 154:1 (1993), 228–288 | DOI | MR | Zbl

[5] U. Oberst, H. J. Schneider, “Über Untergruppen Endlicher Algebraischer Gruppen”, Manuscripta Math., 8:3 (1973), 217–241 | DOI | MR | Zbl

[6] D. E. Radford, “Minimal quasitriangular Hopf algebras”, J. Algebra, 157:2 (1993), 285–315 | DOI | MR | Zbl

[7] M. A. Hennings, “Invariants of links and 3-manifolds obtained from Hopf algebras”, J. London Math. Soc. (2), 54:3 (1996), 594–624 | DOI | MR | Zbl

[8] H. Chen, G. Hiss, “Notes on the Drinfeld double of finite dimensional group algebras”, Algebra Colloq., 19:3 (2012), 483–492 | MR | Zbl

[9] D. G. Higman, “Indecomposable modules at characteristic $p$”, Duke Math. J., 21:2 (1954), 377–381 | DOI | MR | Zbl

[10] G. J. Janusz, “Indecomposable modules of groups with a cyclic Sylow subgroup”, Trans. Amer. Math. Soc., 125:2 (1966), 288–295 | DOI | MR | Zbl

[11] J. Dong, H. Chen, “The Representations of quantum double of dihedral groups”, Algebra Colloq., 20:1 (2013), 95–108 | MR | Zbl