Ore Extensions of Hopf Coquasigroups
Matematičeskie zametki, Tome 95 (2014) no. 3, pp. 376-384.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, Ore extensions for Hopf coquasigroups are studied. Necessary and sufficient conditions for the Ore extension of a Hopf coquasigroup to be a Hopf coquasigroup are given.
Mots-clés : Hopf coquasigroup
Keywords: Ore extension.
@article{MZM_2014_95_3_a5,
     author = {Zh. Jiao and H. Meng},
     title = {Ore {Extensions} of {Hopf} {Coquasigroups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {376--384},
     publisher = {mathdoc},
     volume = {95},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a5/}
}
TY  - JOUR
AU  - Zh. Jiao
AU  - H. Meng
TI  - Ore Extensions of Hopf Coquasigroups
JO  - Matematičeskie zametki
PY  - 2014
SP  - 376
EP  - 384
VL  - 95
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a5/
LA  - ru
ID  - MZM_2014_95_3_a5
ER  - 
%0 Journal Article
%A Zh. Jiao
%A H. Meng
%T Ore Extensions of Hopf Coquasigroups
%J Matematičeskie zametki
%D 2014
%P 376-384
%V 95
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a5/
%G ru
%F MZM_2014_95_3_a5
Zh. Jiao; H. Meng. Ore Extensions of Hopf Coquasigroups. Matematičeskie zametki, Tome 95 (2014) no. 3, pp. 376-384. http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a5/

[1] J. Klim, S. Majid, “Hopf quasigroups and the algebraic 7-sphere”, J. Alghebra, 323:11 (2010), 3067–3110 | DOI | MR | Zbl

[2] M. Beattie, S. Dăscălescu, L. Grünenfelder, “Constructing pointed Hopf algebras by Ore extensions”, J. Algebra, 225:2 (2000), 743–770 | DOI | MR | Zbl

[3] L. Delvaux, “Pairing and Drinfel'd-double of Ore-extensions”, Comm. Algebra, 29:7 (2001), 3167–3177 | DOI | MR | Zbl

[4] M. Beattie, “An isomorphism theorem for Ore extension Hopf algebras”, Comm. Algebra, 28:2 (2000), 569–584 | DOI | MR | Zbl

[5] A. Nenciu, “Quasitriangular structures for a class of pointed Hopf algebras constructed by Ore extensions”, Comm. Algebra, 29:8 (2001), 3419–3432 | DOI | MR | Zbl

[6] A. Nenciu, “Cleft extensions for a class of pointed Hopf algebras constructed by Ore extensions”, Comm. Algebra, 29:5 (2001), 1959–1981 | DOI | MR | Zbl

[7] A. N. Panov, “Rasshireniya Ore algebr Khopfa”, Matem. zametki, 74:3 (2003), 425–434 | DOI | MR | Zbl

[8] M. E. Sweedler, Hopf Algebras, Math. Lecture Note Ser., W. A. Benjamin, New York, 1969 | MR | Zbl

[9] C. Kassel, Quantum Groups, Grad. Texts in Math., 155, Springer-Verlag, New York, 1995 | MR | Zbl