Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2014_95_3_a4, author = {V. V. Grushin and S. Yu. Dobrokhotov}, title = {Homogenization in the {Problem} of {Long} {Water} {Waves} over a {Bottom} {Site} with {Fast} {Oscillations}}, journal = {Matemati\v{c}eskie zametki}, pages = {359--375}, publisher = {mathdoc}, volume = {95}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a4/} }
TY - JOUR AU - V. V. Grushin AU - S. Yu. Dobrokhotov TI - Homogenization in the Problem of Long Water Waves over a Bottom Site with Fast Oscillations JO - Matematičeskie zametki PY - 2014 SP - 359 EP - 375 VL - 95 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a4/ LA - ru ID - MZM_2014_95_3_a4 ER -
V. V. Grushin; S. Yu. Dobrokhotov. Homogenization in the Problem of Long Water Waves over a Bottom Site with Fast Oscillations. Matematičeskie zametki, Tome 95 (2014) no. 3, pp. 359-375. http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a4/
[1] N. S. Bakhvalov, G. P. Panasenko, Osrednenie protsessov v periodicheskikh sredakh. Matematicheskie zadachi mekhaniki kompozitsionnykh materialov, Nauka, M., 1984 | MR | Zbl
[2] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Usrednenie differentsialnykh operatorov, Fizmatlit, M., 1993 | MR | Zbl
[3] V. A. Marchenko, E. Ya. Khruslov, Usrednennye modeli mikroneodnorodnykh sred, FTINT im. B. I. Verkina NAN Ukrainy, Kharkov, 2003
[4] A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structures, Stud. Math. Appl., 5, North-Holland Publ., Amsterdam, 1978 | MR | Zbl
[5] E. N. Pelinovskii, Gidrodinamika voln tsunami, Institut prikladnoi fiziki RAN, Nizhnii Novgorod, 1996
[6] S. Yu. Dobrokhotov, A. I. Shafarevich, B. Tirozzi, “Localized wave and vortical solutions to linear hyperbolic systems and their application to linear shallow water equations”, Russ. J. Math. Phys., 15:2 (2008), 192–221 | DOI | MR | Zbl
[7] S. Yu. Dobrokhotov, B. Tirozzi, C. A. Vargas, “Behavior near the focal points of asymptotic solutions to the Cauchy problem for the linearized shallow water equations with initial localized perturbations”, Russ. J. Math. Phys., 16:2 (2009), 228–245 | DOI | MR | Zbl
[8] S. Yu. Dobrokhotov, R. V. Nekrasov, B. Tirozzi, “Localaized Asymptotic solutions of the linear shallow-water equations with localized initial data”, J. Engrg. Math., 69:2-3 (2011), 225–242 | DOI | MR | Zbl
[9] I. Bryuning, V. V. Grushin, S. Yu. Dobrokhotov, “Osrednenie lineinykh operatorov, adiabaticheskoe priblizhenie i psevdodifferentsialnye operatory”, Matem. zametki, 92:2 (2012), 163–180 | DOI | Zbl
[10] J. Bruning, V. V. Grushin, S. Yu. Dobrokhotov, “Approximate formulas for eigenvalues of the Laplace operator on a torus arising in linear problems with oscillating coefficients”, Russ. J. Math. Phys., 19:3 (2012), 261–272 | DOI | MR | Zbl
[11] V. V. Grushin, S. Yu. Dobrokhotov, S. A. Sergeev, “Osrednenie i dispersionnye effekty v zadache o rasprostranenii voln, porozhdennykh lokalizovannym istochnikom”, Sovremennye problemy mekhaniki, Sbornik statei. K 80-letiyu so dnya rozhdeniya akademika Andreya Gennadevicha Kulikovskogo, Tr. MIAN, 281, MAIK, M., 2013, 170–187 | DOI
[12] S. Yu. Dobrokhotov, “Prilozhenie teorii Maslova k dvum zadacham dlya uravnenii s operatornoznachnym simvolom: elektron-fononnoe vzaimodeistvie i uravnenie Shredingera s bystroostsilliruyuschim potentsialom”, UMN, 39:4 (1984), 125
[13] V. S. Buslaev, “Kvaziklassicheskoe priblizhenie dlya uravnenii s periodicheskimi koeffitsientami”, UMN, 42:6 (1987), 77–98 | MR | Zbl
[14] L. V. Berlyand, S. Yu. Dobrokhotov, ““Operatornoe razdelenie peremennykh” v zadache o korotkovolnovoi asimptotike dlya differentsialnykh uravnenii s bystromenyayuschimisya koeffitsientami”, Dokl. AN SSSR, 296:1 (1987), 80–84 | MR | Zbl
[15] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. 6. Gidrodinamika, Nauka, M., 1986 | MR
[16] J. J. Stoker, Water Waves. The Mathematical Theory with Applications, Pure Appl. Math., 4, Intersci. Publ., New York, 1957 | MR | Zbl
[17] C. C. Mei, The Applied Dynamics of Ocean Surface Waves, Adv. Ser. Ocean Engrg., 1, World Sci., Singapore, 1989 | Zbl
[18] S. Yu. Dobrokhotov, “Metody Maslova v linearizovannoi teorii gravitatsionnykh voln na poverkhnosti zhidkosti”, Dokl. AN SSSR, 269:1 (1983), 76–80 | MR | Zbl
[19] S. Yu. Dobrokhotov, P. N. Zhevandrov, “Asymptotic expansions and the Maslov canonical operator in the linear theory of water waves. I. Main constructions and equations for surface gravity waves”, Russ. J. Math. Phys., 10:1 (2003), 1–31 | MR | Zbl
[20] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1965
[21] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR | Zbl
[22] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl
[23] V. V. Belov, S. Yu. Dobrokhotov, T. Ya. Tudorovskiy, “Operator separation of variables for adiabatic problems in quantum and wave mechanics”, J. Engrg. Math., 55:1-4 (2006), 183–237 | DOI | MR | Zbl
[24] V. V. Belov, S. Yu. Dobrokhotov, V. P. Maslov, T. Ya. Tudorovskii, “Obobschennyi adiabaticheskii printsip dlya opisaniya dinamiki elektrona v iskrivlennykh nanostrukturakh”, UFN, 175:9 (2005), 1004–1010 | DOI
[25] V. V. Grushin, S. Yu. Dobrokhotov, “Podstanovka Paierlsa i operatornyi metod Maslova”, Matem. zametki, 87:4 (2010), 554–571 | DOI | MR | Zbl
[26] I. Bryuning, V. V. Grushin, S. Yu. Dobrokhotov, T. Ya. Tudorovskii, “Obobschennoe preobrazovanie Foldi–Vutkhaizena i psevdodifferentsialnye operatory”, TMF, 167:2 (2011), 171–192 | DOI
[27] E. M. Lifshits, L. P. Pitaevskii, Teoreticheskaya fizika. T. 9. Statisticheskaya fizika. Ch. 2. Teoriya kondensirovannogo sostoyaniya, Nauka, M., 1978 | MR
[28] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl
[29] S. Yu. Dobrokhotov, S. A. Sergeev, B. Tirozzi, “Asymptotic solutions of the Cauchy problem with localized initial conditions for linearized two-dimensional Boussinesq-type equations with variable coefficients”, Russ. J. Math. Phys., 20:2 (2013), 155–171 | DOI | MR | Zbl