Homogenization in the Problem of Long Water Waves over a Bottom Site with Fast Oscillations
Matematičeskie zametki, Tome 95 (2014) no. 3, pp. 359-375.

Voir la notice de l'article provenant de la source Math-Net.Ru

The system of equations of gravity surface waves is considered in the case where the basin's bottom is given by a rapidly oscillating function against a background of slow variations of the bottom. Under the assumption that the lengths of the waves under study are greater than the characteristic length of the basin bottom's oscillations but can be much less than the characteristic dimensions of the domain where these waves propagate, the adiabatic approximation is used to pass to a reduced homogenized equation of wave equation type or to the linearized Boussinesq equation with dispersion that is “anomalous” in the theory of surface waves (equations of wave equation type with added fourth derivatives). The rapidly varying solutions of the reduced equation can be found (and they were also found in the authors' works) by asymptotic methods, for example, by the WKB method, and in the case of focal points, by the Maslov canonical operator and its generalizations.
Keywords: surface waves, homogenization, asymptotic methods, small parameter, adiabatic approximation, rapidly oscillating function.
@article{MZM_2014_95_3_a4,
     author = {V. V. Grushin and S. Yu. Dobrokhotov},
     title = {Homogenization in the {Problem} of {Long} {Water} {Waves} over a {Bottom} {Site} with {Fast} {Oscillations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {359--375},
     publisher = {mathdoc},
     volume = {95},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a4/}
}
TY  - JOUR
AU  - V. V. Grushin
AU  - S. Yu. Dobrokhotov
TI  - Homogenization in the Problem of Long Water Waves over a Bottom Site with Fast Oscillations
JO  - Matematičeskie zametki
PY  - 2014
SP  - 359
EP  - 375
VL  - 95
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a4/
LA  - ru
ID  - MZM_2014_95_3_a4
ER  - 
%0 Journal Article
%A V. V. Grushin
%A S. Yu. Dobrokhotov
%T Homogenization in the Problem of Long Water Waves over a Bottom Site with Fast Oscillations
%J Matematičeskie zametki
%D 2014
%P 359-375
%V 95
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a4/
%G ru
%F MZM_2014_95_3_a4
V. V. Grushin; S. Yu. Dobrokhotov. Homogenization in the Problem of Long Water Waves over a Bottom Site with Fast Oscillations. Matematičeskie zametki, Tome 95 (2014) no. 3, pp. 359-375. http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a4/

[1] N. S. Bakhvalov, G. P. Panasenko, Osrednenie protsessov v periodicheskikh sredakh. Matematicheskie zadachi mekhaniki kompozitsionnykh materialov, Nauka, M., 1984 | MR | Zbl

[2] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Usrednenie differentsialnykh operatorov, Fizmatlit, M., 1993 | MR | Zbl

[3] V. A. Marchenko, E. Ya. Khruslov, Usrednennye modeli mikroneodnorodnykh sred, FTINT im. B. I. Verkina NAN Ukrainy, Kharkov, 2003

[4] A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structures, Stud. Math. Appl., 5, North-Holland Publ., Amsterdam, 1978 | MR | Zbl

[5] E. N. Pelinovskii, Gidrodinamika voln tsunami, Institut prikladnoi fiziki RAN, Nizhnii Novgorod, 1996

[6] S. Yu. Dobrokhotov, A. I. Shafarevich, B. Tirozzi, “Localized wave and vortical solutions to linear hyperbolic systems and their application to linear shallow water equations”, Russ. J. Math. Phys., 15:2 (2008), 192–221 | DOI | MR | Zbl

[7] S. Yu. Dobrokhotov, B. Tirozzi, C. A. Vargas, “Behavior near the focal points of asymptotic solutions to the Cauchy problem for the linearized shallow water equations with initial localized perturbations”, Russ. J. Math. Phys., 16:2 (2009), 228–245 | DOI | MR | Zbl

[8] S. Yu. Dobrokhotov, R. V. Nekrasov, B. Tirozzi, “Localaized Asymptotic solutions of the linear shallow-water equations with localized initial data”, J. Engrg. Math., 69:2-3 (2011), 225–242 | DOI | MR | Zbl

[9] I. Bryuning, V. V. Grushin, S. Yu. Dobrokhotov, “Osrednenie lineinykh operatorov, adiabaticheskoe priblizhenie i psevdodifferentsialnye operatory”, Matem. zametki, 92:2 (2012), 163–180 | DOI | Zbl

[10] J. Bruning, V. V. Grushin, S. Yu. Dobrokhotov, “Approximate formulas for eigenvalues of the Laplace operator on a torus arising in linear problems with oscillating coefficients”, Russ. J. Math. Phys., 19:3 (2012), 261–272 | DOI | MR | Zbl

[11] V. V. Grushin, S. Yu. Dobrokhotov, S. A. Sergeev, “Osrednenie i dispersionnye effekty v zadache o rasprostranenii voln, porozhdennykh lokalizovannym istochnikom”, Sovremennye problemy mekhaniki, Sbornik statei. K 80-letiyu so dnya rozhdeniya akademika Andreya Gennadevicha Kulikovskogo, Tr. MIAN, 281, MAIK, M., 2013, 170–187 | DOI

[12] S. Yu. Dobrokhotov, “Prilozhenie teorii Maslova k dvum zadacham dlya uravnenii s operatornoznachnym simvolom: elektron-fononnoe vzaimodeistvie i uravnenie Shredingera s bystroostsilliruyuschim potentsialom”, UMN, 39:4 (1984), 125

[13] V. S. Buslaev, “Kvaziklassicheskoe priblizhenie dlya uravnenii s periodicheskimi koeffitsientami”, UMN, 42:6 (1987), 77–98 | MR | Zbl

[14] L. V. Berlyand, S. Yu. Dobrokhotov, ““Operatornoe razdelenie peremennykh” v zadache o korotkovolnovoi asimptotike dlya differentsialnykh uravnenii s bystromenyayuschimisya koeffitsientami”, Dokl. AN SSSR, 296:1 (1987), 80–84 | MR | Zbl

[15] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. 6. Gidrodinamika, Nauka, M., 1986 | MR

[16] J. J. Stoker, Water Waves. The Mathematical Theory with Applications, Pure Appl. Math., 4, Intersci. Publ., New York, 1957 | MR | Zbl

[17] C. C. Mei, The Applied Dynamics of Ocean Surface Waves, Adv. Ser. Ocean Engrg., 1, World Sci., Singapore, 1989 | Zbl

[18] S. Yu. Dobrokhotov, “Metody Maslova v linearizovannoi teorii gravitatsionnykh voln na poverkhnosti zhidkosti”, Dokl. AN SSSR, 269:1 (1983), 76–80 | MR | Zbl

[19] S. Yu. Dobrokhotov, P. N. Zhevandrov, “Asymptotic expansions and the Maslov canonical operator in the linear theory of water waves. I. Main constructions and equations for surface gravity waves”, Russ. J. Math. Phys., 10:1 (2003), 1–31 | MR | Zbl

[20] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1965

[21] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR | Zbl

[22] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl

[23] V. V. Belov, S. Yu. Dobrokhotov, T. Ya. Tudorovskiy, “Operator separation of variables for adiabatic problems in quantum and wave mechanics”, J. Engrg. Math., 55:1-4 (2006), 183–237 | DOI | MR | Zbl

[24] V. V. Belov, S. Yu. Dobrokhotov, V. P. Maslov, T. Ya. Tudorovskii, “Obobschennyi adiabaticheskii printsip dlya opisaniya dinamiki elektrona v iskrivlennykh nanostrukturakh”, UFN, 175:9 (2005), 1004–1010 | DOI

[25] V. V. Grushin, S. Yu. Dobrokhotov, “Podstanovka Paierlsa i operatornyi metod Maslova”, Matem. zametki, 87:4 (2010), 554–571 | DOI | MR | Zbl

[26] I. Bryuning, V. V. Grushin, S. Yu. Dobrokhotov, T. Ya. Tudorovskii, “Obobschennoe preobrazovanie Foldi–Vutkhaizena i psevdodifferentsialnye operatory”, TMF, 167:2 (2011), 171–192 | DOI

[27] E. M. Lifshits, L. P. Pitaevskii, Teoreticheskaya fizika. T. 9. Statisticheskaya fizika. Ch. 2. Teoriya kondensirovannogo sostoyaniya, Nauka, M., 1978 | MR

[28] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[29] S. Yu. Dobrokhotov, S. A. Sergeev, B. Tirozzi, “Asymptotic solutions of the Cauchy problem with localized initial conditions for linearized two-dimensional Boussinesq-type equations with variable coefficients”, Russ. J. Math. Phys., 20:2 (2013), 155–171 | DOI | MR | Zbl