Prym Differentials on a Variable Compact Riemann Surface
Matematičeskie zametki, Tome 95 (2014) no. 3, pp. 457-474.

Voir la notice de l'article provenant de la source Math-Net.Ru

The dimensions and bases of the spaces of meromorphic Prym differentials on a variable compact Riemann surface, as well as in the first holomorphic de Rham cohomology group of Prym differentials, are found for any characters.
Keywords: Prym differential, holomorphic de Rham cohomology, variable compact Riemann surface, Jacobian variety, Jacobian bundle, multiplicative function
Mots-clés : multiplicative Weierstrass point, multiplicative Weierstrass gap.
@article{MZM_2014_95_3_a11,
     author = {M. I. Tulina and V. V. Chueshev},
     title = {Prym {Differentials} on a {Variable} {Compact} {Riemann} {Surface}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {457--474},
     publisher = {mathdoc},
     volume = {95},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a11/}
}
TY  - JOUR
AU  - M. I. Tulina
AU  - V. V. Chueshev
TI  - Prym Differentials on a Variable Compact Riemann Surface
JO  - Matematičeskie zametki
PY  - 2014
SP  - 457
EP  - 474
VL  - 95
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a11/
LA  - ru
ID  - MZM_2014_95_3_a11
ER  - 
%0 Journal Article
%A M. I. Tulina
%A V. V. Chueshev
%T Prym Differentials on a Variable Compact Riemann Surface
%J Matematičeskie zametki
%D 2014
%P 457-474
%V 95
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a11/
%G ru
%F MZM_2014_95_3_a11
M. I. Tulina; V. V. Chueshev. Prym Differentials on a Variable Compact Riemann Surface. Matematičeskie zametki, Tome 95 (2014) no. 3, pp. 457-474. http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a11/

[1] F. Prym, G. Rost, Theorie der Prymschen Funktionen erster Ordnung im Anschluß an die Schöpfungen Riemanns, B. G. Teubner, Leipzig, 1911 | Zbl

[2] P. Appell, “Sur les intégrales de fonctions à multiplicateurs et leur application au développement des fonctions abéliennes en séries trigonométriques”, Acta Math., 13:3/4 (1890), 1–174 | Zbl

[3] H. Petersson, “Über eine Metrisierung der automorphen Formen und die Theorie der Poincarśchen Reihen”, Math. Ann., 117:4 (1940), 453–537 | DOI | MR | Zbl

[4] R. C. Gunning, “On the period classes of Prym differentials. I”, J. Reine Angew. Math., 319 (1980), 153–171 | MR | Zbl

[5] J. Fay, “Analytic torsion and Prym differentials”, Riemann Surfaces and Related Topics, Ann. of Math. Stud., 97, Princeton Univ. Press, Princeton, NJ, 1980, 107–122 | MR | Zbl

[6] H. M. Farkas, I. Kra, Riemann Surfaces, Grad. Texts in Math., 71, Springer-Verlag, New-York, 1992 | MR | Zbl

[7] B. A. Dubrovin, Rimanovy poverkhnosti i nelineinye uravneniya, Ch. 1, Izd-vo Mosk. un-ta, M., 1986

[8] V. V. Chueshev, Multiplikativnye funktsii i differentsialy Prima na peremennoi kompaktnoi rimanovoi poverkhnosti, Ch. 2, KemGU, Kemerovo, 2003

[9] V. V. Chueshev, “Multiplikativnye tochki Veiershtrassa i mnogoobrazie Yakobi kompaktnoi rimanovoi poverkhnosti”, Matem. zametki, 74:4 (2003), 629–636 | DOI | MR | Zbl

[10] A. A. Kazantseva, V. V. Chueshev, “Prostranstva meromorfnykh differentsialov Prima na konechnoi rimanovoi poverkhnosti”, Sib. matem. zhurn., 53:1 (2012), 89–106 | MR

[11] M. I. Tulina, “Odnoznachnye differentsialy i spetsialnye divizory differentsialov Prima”, Sib. matem. zhurn., 54:4 (2013), 914–931

[12] L. V. Alfors, L. Bers, Prostranstva rimanovykh poverkhnostei i kvazikonformnye otobrazheniya, IL, M., 1961 | MR

[13] V. V. Chueshev, Geometricheskaya teoriya funktsii na kompaktnoi rimanovoi poverkhnosti, KemGU, Kemerovo, 2005

[14] C. J. Earle, “Families of Riemann surfaces and Jacobi varieties”, Ann. of Math. (2), 107:2 (1978), 255–286 | DOI | MR | Zbl

[15] Dzh. Springer, Vvedenie v teoriyu rimanovykh poverkhnostei, IL, M., 1960 | MR | Zbl

[16] E. Arbarello, “Weierstrass points and moduli of curves”, Compositio Math., 29 (1974), 325–342 | MR | Zbl

[17] M. I. Golovina, “Divizory differentsialov Prima na rimanovoi poverkhnosti”, Vestn. KemGU, 2011, no. 3/1, 193–199