Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2014_95_3_a1, author = {L. A. Beklaryan}, title = {Criteria for the {Existence} of an {Invariant} {Measure} for {Groups} of {Homeomorphisms} of the {Line}}, journal = {Matemati\v{c}eskie zametki}, pages = {335--339}, publisher = {mathdoc}, volume = {95}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a1/} }
TY - JOUR AU - L. A. Beklaryan TI - Criteria for the Existence of an Invariant Measure for Groups of Homeomorphisms of the Line JO - Matematičeskie zametki PY - 2014 SP - 335 EP - 339 VL - 95 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a1/ LA - ru ID - MZM_2014_95_3_a1 ER -
L. A. Beklaryan. Criteria for the Existence of an Invariant Measure for Groups of Homeomorphisms of the Line. Matematičeskie zametki, Tome 95 (2014) no. 3, pp. 335-339. http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a1/
[1] J. F. Plante, “Foliations with measure preserving holonomy”, Ann. of Math. (2), 102:2 (1975), 327–361 | DOI | MR | Zbl
[2] L. A. Beklaryan, “Invariantnye i proektivno invariantnye mery dlya grupp gomeomorfizmov $\mathbb R$, sokhranyayuschikh orientatsiyu”, Dokl. RAN, 332:6 (1993), 679–681 | MR | Zbl
[3] L. A. Beklaryan, “K voprosu o klassifikatsii grupp gomeomorfizmov $\mathbb R$, sokhranyayuschikh orientatsiyu. III. $\omega$-proektivno-invariantnye mery”, Matem. sb., 190:4 (1999), 43–62 | DOI | MR | Zbl
[4] L. A. Beklaryan, “K voprosu o klassifikatsii grupp gomeomorfizmov $\mathbb R$, sokhranyayuschikh orientatsiyu. II. Proektivno-invariantnye mery”, Matem. sb., 187:4 (1996), 3–28 | DOI | MR | Zbl