Criteria for the Existence of an Invariant Measure for Groups of Homeomorphisms of the Line
Matematičeskie zametki, Tome 95 (2014) no. 3, pp. 335-339.

Voir la notice de l'article provenant de la source Math-Net.Ru

In [1] (1975), for finitely generated groups of homeomorphisms of the line (the circle), Plante obtained a criterion for the existence of an invariant measure. In the paper, we obtain a criterion for the existence of an invariant measure for groups of homeomorphisms of the line (the circle) such that every finitely generated subgroup of the group satisfies the Plante conditions.
Keywords: invariant measure, group of homeomorphisms, finitely generated subgroup
Mots-clés : Plante conditions.
@article{MZM_2014_95_3_a1,
     author = {L. A. Beklaryan},
     title = {Criteria for the {Existence} of an {Invariant} {Measure} for {Groups} of {Homeomorphisms} of the {Line}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {335--339},
     publisher = {mathdoc},
     volume = {95},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a1/}
}
TY  - JOUR
AU  - L. A. Beklaryan
TI  - Criteria for the Existence of an Invariant Measure for Groups of Homeomorphisms of the Line
JO  - Matematičeskie zametki
PY  - 2014
SP  - 335
EP  - 339
VL  - 95
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a1/
LA  - ru
ID  - MZM_2014_95_3_a1
ER  - 
%0 Journal Article
%A L. A. Beklaryan
%T Criteria for the Existence of an Invariant Measure for Groups of Homeomorphisms of the Line
%J Matematičeskie zametki
%D 2014
%P 335-339
%V 95
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a1/
%G ru
%F MZM_2014_95_3_a1
L. A. Beklaryan. Criteria for the Existence of an Invariant Measure for Groups of Homeomorphisms of the Line. Matematičeskie zametki, Tome 95 (2014) no. 3, pp. 335-339. http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a1/

[1] J. F. Plante, “Foliations with measure preserving holonomy”, Ann. of Math. (2), 102:2 (1975), 327–361 | DOI | MR | Zbl

[2] L. A. Beklaryan, “Invariantnye i proektivno invariantnye mery dlya grupp gomeomorfizmov $\mathbb R$, sokhranyayuschikh orientatsiyu”, Dokl. RAN, 332:6 (1993), 679–681 | MR | Zbl

[3] L. A. Beklaryan, “K voprosu o klassifikatsii grupp gomeomorfizmov $\mathbb R$, sokhranyayuschikh orientatsiyu. III. $\omega$-proektivno-invariantnye mery”, Matem. sb., 190:4 (1999), 43–62 | DOI | MR | Zbl

[4] L. A. Beklaryan, “K voprosu o klassifikatsii grupp gomeomorfizmov $\mathbb R$, sokhranyayuschikh orientatsiyu. II. Proektivno-invariantnye mery”, Matem. sb., 187:4 (1996), 3–28 | DOI | MR | Zbl