On Tur\'an's $(3,4)$-Problem with Forbidden Subgraphs
Matematičeskie zametki, Tome 95 (2014) no. 2, pp. 271-281.

Voir la notice de l'article provenant de la source Math-Net.Ru

We identify three $3$-graphs on five vertices that are missing in all known extremal configurations for Turán's $(3,4)$-problem and prove Turán's conjecture for $3$-graphs that are additionally known not to contain any induced copies of these $3$-graphs. Our argument is based on an (apparently) new technique of “indirect interpretation” that allows us to retrieve additional structure from hypothetical counterexamples to Turán's conjecture, but in rather loose and limited sense. We also include two miscellaneous calculations in flag algebras that prove similar results about some other additional forbidden subgraphs.
Keywords: Turán's $(3,4)$-problem, $3$-graph, hypergraph, forbidden subgraph.
@article{MZM_2014_95_2_a9,
     author = {A. A. Razborov},
     title = {On {Tur\'an's} $(3,4)${-Problem} with {Forbidden} {Subgraphs}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {271--281},
     publisher = {mathdoc},
     volume = {95},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a9/}
}
TY  - JOUR
AU  - A. A. Razborov
TI  - On Tur\'an's $(3,4)$-Problem with Forbidden Subgraphs
JO  - Matematičeskie zametki
PY  - 2014
SP  - 271
EP  - 281
VL  - 95
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a9/
LA  - ru
ID  - MZM_2014_95_2_a9
ER  - 
%0 Journal Article
%A A. A. Razborov
%T On Tur\'an's $(3,4)$-Problem with Forbidden Subgraphs
%J Matematičeskie zametki
%D 2014
%P 271-281
%V 95
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a9/
%G ru
%F MZM_2014_95_2_a9
A. A. Razborov. On Tur\'an's $(3,4)$-Problem with Forbidden Subgraphs. Matematičeskie zametki, Tome 95 (2014) no. 2, pp. 271-281. http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a9/

[1] W. Mantel, “Vraagstuk XXVIII”, Wiskundige Opgaven, 10 (1907), 60–61 | Zbl

[2] P. Turán, “Egy gráfelméleti szélsöértékfeladatról”, Mat. és Fiz. Lapok, 48 (1941), 436–452 | MR | Zbl

[3] P. Keevash, “Hypergraph Turán Problems”, Surveys in Combinatorics, London Math. Soc. Lecture Note Ser., 392, Cambridge Univ. Press, Cambridge, 2011, 83–139 | MR | Zbl

[4] D. de Caen, “The current status of Turán problem on hypergraphs”, Extremal Problems for Finite Sets, Bolyai Soc. Math. Stud., 3, János Bolyai Math. Soc., Budapest, 1991, 187–197 | MR | Zbl

[5] F. Chung, L. Lu, “An upper bound for the Turán number $t_3(n, 4)$”, J. Combin. Theory Ser. A, 87:2 (1999), 381–389 | DOI | MR | Zbl

[6] A. A. Razborov, “On 3-hypergraphs with forbidden 4-vertex configurations”, SIAM J. Discrete Math., 24:3 (2010), 946–963 | DOI | MR | Zbl

[7] V. Falgas-Ravry, E. R. Vaughan, “Applications of the semi-definite method to the Turán density problem for 3-graphs”, Combin. Probab. Comput., 22:1 (2013), 21–54 | DOI | MR | Zbl

[8] W. G. Brown, “On an open problem of Paul Turán concerning 3-graphs”, Studies in Pure Mathematics, Birkhäuser Verlag, Basel, 1983, 91–93 | MR | Zbl

[9] A. V. Kostochka, “A class of constructions for Turán's $(3, 4)$-problem”, Combinatorica, 2:2 (1982), 187–192 | DOI | MR | Zbl

[10] D. G. Fon-Der-Flaass, “Ob odnom sposobe postroeniya $(3,4)$-grafov”, Matem. zametki, 44:4 (1988), 546–550 | MR | Zbl

[11] A. A. Razborov, “Ob interpretatsii Fon-Der-Flaassa ekstremalnykh primerov dlya $(3,4)$-problemy Turana”, Algoritmicheskie voprosy algebry i logiki, Sbornik statei. K 80-letiyu so dnya rozhdeniya akademika Sergeya Ivanovicha Adyana, Tr. MIAN, 274, MAIK, M., 2011, 269–290 | MR

[12] O. Pikhurko, “The minimum size of 3-graphs without a 4-set spanning no or exactly three edges”, European J. Combin., 32:7 (2011), 1142–1155 | DOI | MR | Zbl

[13] A. A. Razborov, “Flag algebras”, J. Symbolic Logic, 72:4 (2007), 1239–1282 | DOI | MR | Zbl

[14] R. L. Graham, B. L. Rothschild, J. H. Spencer, Ramsey Theory, Wiley-Intersci. Ser. Discrete Math. Optim., John Wiley Sons, New York, 1990 | MR | Zbl

[15] Z. Füredi, O. Pikhurko, M. Simonovits, “The Turán density of the hypergraph $\{abc, ade, bde,cde\}$”, Electron. J. Combin., 10 (2003), Research Paper 18 | MR | Zbl