Isometric Embeddings of Locally Euclidean Metrics in~$\mathbb R^3$ as Conical Surfaces
Matematičeskie zametki, Tome 95 (2014) no. 2, pp. 234-247
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that if a domain with a locally Euclidean metric can be isometrically immersed in the Euclidean plane $\mathbb R^2$ with the standard metric, then it can be isometrically embedded in $\mathbb R^3$ as a conical surface whose projection on a sphere centered at the vertex of the cone is a self-avoiding planar graph with sufficiently smooth edges of specially selected lengths.
Keywords:
locally Euclidean metric, isometric embedding, isometric immersion, conical surface, planar graph.
@article{MZM_2014_95_2_a6,
author = {S. N. Mikhalev and I. Kh. Sabitov},
title = {Isometric {Embeddings} of {Locally} {Euclidean} {Metrics} in~$\mathbb R^3$ as {Conical} {Surfaces}},
journal = {Matemati\v{c}eskie zametki},
pages = {234--247},
publisher = {mathdoc},
volume = {95},
number = {2},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a6/}
}
TY - JOUR AU - S. N. Mikhalev AU - I. Kh. Sabitov TI - Isometric Embeddings of Locally Euclidean Metrics in~$\mathbb R^3$ as Conical Surfaces JO - Matematičeskie zametki PY - 2014 SP - 234 EP - 247 VL - 95 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a6/ LA - ru ID - MZM_2014_95_2_a6 ER -
S. N. Mikhalev; I. Kh. Sabitov. Isometric Embeddings of Locally Euclidean Metrics in~$\mathbb R^3$ as Conical Surfaces. Matematičeskie zametki, Tome 95 (2014) no. 2, pp. 234-247. http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a6/