Conservation of Hyperbolic Tori in Hamiltonian Systems
Matematičeskie zametki, Tome 95 (2014) no. 2, pp. 227-233.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 2000, Bolotin and Treshchev proposed an invariant definition of the hyperbolic torus, generalizing the traditional coordinate definition. Simultaneously, they conjectured that, under standard assumptions on its Diophantine properties, nondegeneracy, and analyticity, the hyperbolic torus is conserved in the case of small perturbations. This conjecture generalizes Graff's theorem. In the present paper, this conjecture is shown to be valid.
Keywords: hyperbolic torus, Hamiltonian system, Graff's theorem, frequency vector, KAM theory.
Mots-clés : Diophantine torus
@article{MZM_2014_95_2_a5,
     author = {A. G. Medvedev},
     title = {Conservation of {Hyperbolic} {Tori} in {Hamiltonian} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {227--233},
     publisher = {mathdoc},
     volume = {95},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a5/}
}
TY  - JOUR
AU  - A. G. Medvedev
TI  - Conservation of Hyperbolic Tori in Hamiltonian Systems
JO  - Matematičeskie zametki
PY  - 2014
SP  - 227
EP  - 233
VL  - 95
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a5/
LA  - ru
ID  - MZM_2014_95_2_a5
ER  - 
%0 Journal Article
%A A. G. Medvedev
%T Conservation of Hyperbolic Tori in Hamiltonian Systems
%J Matematičeskie zametki
%D 2014
%P 227-233
%V 95
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a5/
%G ru
%F MZM_2014_95_2_a5
A. G. Medvedev. Conservation of Hyperbolic Tori in Hamiltonian Systems. Matematičeskie zametki, Tome 95 (2014) no. 2, pp. 227-233. http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a5/

[1] S. V. Bolotin, D. V. Treschev, “Remarks on the definition of hyperbolic tori of Hamiltonian systems”, Regul. Chaotic Dyn., 5:4 (2000), 401–412 | MR | Zbl

[2] S. M. Graff, “On the conservation of hyperbolic invariant tori for Hamiltonian systems”, J. Differential Equations, 15:1 (1974), 1–69 | MR | Zbl

[3] Yu. N. Bibikov, “Usilenie odnoi teoremy Mozera”, Dokl. AN SSSR, 213:4 (1973), 766–769 | MR | Zbl

[4] E. Zehnder, “Generalized implicit function theorems with applications to some small divisor problems. II”, Comm. Pure Appl. Math., 29:1 (1976), 49–111 | MR | Zbl

[5] E. Fontich, R. de la Llave, Y. Sire, “Construction of invariant whiskered tori by a parameterization method. I. Maps and flows in finite dimensions”, J. Differential Equations, 246:8 (2009), 3136–3213 | MR | Zbl

[6] D. Treschev, O. Zubelevich, Introduction to the Perturbation Theory of Hamiltonian Systems, Springer Monogr. Math., Springer-Verlag, Berlin, 2010 | MR | Zbl

[7] M. R. Herman, “Inégalités “a priori” pour des tores lagrangiens invariants par des difféomorphismes symplectiques”, Inst. Hautes Études Sci. Publ. Math., 70 (1989), 47–101 | MR | Zbl