Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2014_95_2_a5, author = {A. G. Medvedev}, title = {Conservation of {Hyperbolic} {Tori} in {Hamiltonian} {Systems}}, journal = {Matemati\v{c}eskie zametki}, pages = {227--233}, publisher = {mathdoc}, volume = {95}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a5/} }
A. G. Medvedev. Conservation of Hyperbolic Tori in Hamiltonian Systems. Matematičeskie zametki, Tome 95 (2014) no. 2, pp. 227-233. http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a5/
[1] S. V. Bolotin, D. V. Treschev, “Remarks on the definition of hyperbolic tori of Hamiltonian systems”, Regul. Chaotic Dyn., 5:4 (2000), 401–412 | MR | Zbl
[2] S. M. Graff, “On the conservation of hyperbolic invariant tori for Hamiltonian systems”, J. Differential Equations, 15:1 (1974), 1–69 | MR | Zbl
[3] Yu. N. Bibikov, “Usilenie odnoi teoremy Mozera”, Dokl. AN SSSR, 213:4 (1973), 766–769 | MR | Zbl
[4] E. Zehnder, “Generalized implicit function theorems with applications to some small divisor problems. II”, Comm. Pure Appl. Math., 29:1 (1976), 49–111 | MR | Zbl
[5] E. Fontich, R. de la Llave, Y. Sire, “Construction of invariant whiskered tori by a parameterization method. I. Maps and flows in finite dimensions”, J. Differential Equations, 246:8 (2009), 3136–3213 | MR | Zbl
[6] D. Treschev, O. Zubelevich, Introduction to the Perturbation Theory of Hamiltonian Systems, Springer Monogr. Math., Springer-Verlag, Berlin, 2010 | MR | Zbl
[7] M. R. Herman, “Inégalités “a priori” pour des tores lagrangiens invariants par des difféomorphismes symplectiques”, Inst. Hautes Études Sci. Publ. Math., 70 (1989), 47–101 | MR | Zbl