Unique Solvability of Singularly Perturbed Boundary-Value Problems with Unstable Spectrum of the Limit Operator
Matematičeskie zametki, Tome 95 (2014) no. 2, pp. 222-226.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper contains an asymptotic study of solutions of singularly perturbed boundary-value problems in the case of a limit operator with unstable spectrum. The main singularities of the solution are described and the principal term of the asymptotics is constructed.
Keywords: singularly perturbed boundary-value problem, unstable spectrum of the limit operator, regularization method, nonlocal boundary-value problem, turning point.
@article{MZM_2014_95_2_a4,
     author = {A. G. Eliseev and Yu. A. Konyaev and D. A. Shaposhnikova},
     title = {Unique {Solvability} of {Singularly} {Perturbed} {Boundary-Value} {Problems} with {Unstable} {Spectrum} of the {Limit} {Operator}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {222--226},
     publisher = {mathdoc},
     volume = {95},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a4/}
}
TY  - JOUR
AU  - A. G. Eliseev
AU  - Yu. A. Konyaev
AU  - D. A. Shaposhnikova
TI  - Unique Solvability of Singularly Perturbed Boundary-Value Problems with Unstable Spectrum of the Limit Operator
JO  - Matematičeskie zametki
PY  - 2014
SP  - 222
EP  - 226
VL  - 95
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a4/
LA  - ru
ID  - MZM_2014_95_2_a4
ER  - 
%0 Journal Article
%A A. G. Eliseev
%A Yu. A. Konyaev
%A D. A. Shaposhnikova
%T Unique Solvability of Singularly Perturbed Boundary-Value Problems with Unstable Spectrum of the Limit Operator
%J Matematičeskie zametki
%D 2014
%P 222-226
%V 95
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a4/
%G ru
%F MZM_2014_95_2_a4
A. G. Eliseev; Yu. A. Konyaev; D. A. Shaposhnikova. Unique Solvability of Singularly Perturbed Boundary-Value Problems with Unstable Spectrum of the Limit Operator. Matematičeskie zametki, Tome 95 (2014) no. 2, pp. 222-226. http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a4/

[1] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nelineinyi analiz i ego prilozheniya, Nauka, M., 1977 | MR | Zbl

[2] A. Kh. Naife, Metody vozmuschenii, Mir, M., 1976 | MR

[3] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR | Zbl

[4] S. A. Lomov, Vvedenie v obschuyu teoriyu singulyarnykh vozmuschenii, Nauka, M., 1981 | MR | Zbl

[5] V. F. Safonov, A. A. Bobodzhanov, Singulyarno vozmuschennye zadachi i metod regulyarizatsii, Izd-vo MEI, M., 2010

[6] A. G. Eliseev, S. A. Lomov, “Teoriya singulyarnykh vozmuschenii v sluchae spektralnykh osobennostei predelnogo operatora”, Matem. sb., 131:4 (1986), 544–557 | MR | Zbl

[7] Yu. A. Konyaev, “O nekotorykh metodakh issledovaniya ustoichivosti”, Matem. sb., 192:3 (2001), 65–82 | DOI | MR | Zbl

[8] Yu. A. Konyaev, “Ob odnoznachnoi razreshimosti nekotorykh klassov nelineinykh regulyarnykh i singulyarno vozmuschennykh kraevykh zadach”, Differents. uravneniya, 35:8 (1999), 1028–1035 | MR | Zbl