Mots-clés : parabolic element, elliptic element
@article{MZM_2014_95_2_a13,
author = {A. V. Maslej},
title = {Sufficient {Discreteness} {Conditions} for {Subgroups} of $\textrm{PSL}(2,\mathbb C)$ {Generated} by an {Involution} and a {Nonparabolic} {Element}},
journal = {Matemati\v{c}eskie zametki},
pages = {317--320},
year = {2014},
volume = {95},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a13/}
}
TY - JOUR
AU - A. V. Maslej
TI - Sufficient Discreteness Conditions for Subgroups of $\textrm{PSL}(2,\mathbb C)$ Generated by an Involution and a Nonparabolic Element
JO - Matematičeskie zametki
PY - 2014
SP - 317
EP - 320
VL - 95
IS - 2
UR - http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a13/
LA - ru
ID - MZM_2014_95_2_a13
ER -
%0 Journal Article
%A A. V. Maslej
%T Sufficient Discreteness Conditions for Subgroups of $\textrm{PSL}(2,\mathbb C)$ Generated by an Involution and a Nonparabolic Element
%J Matematičeskie zametki
%D 2014
%P 317-320
%V 95
%N 2
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a13/
%G ru
%F MZM_2014_95_2_a13
A. V. Maslej. Sufficient Discreteness Conditions for Subgroups of $\textrm{PSL}(2,\mathbb C)$ Generated by an Involution and a Nonparabolic Element. Matematičeskie zametki, Tome 95 (2014) no. 2, pp. 317-320. http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a13/
[1] A. Rasskazov, Adv. Geom., 6:1 (2006), 85–92 | DOI | MR | Zbl
[2] A. V. Maslei, “Dostatochnye usloviya diskretnosti dlya dvuporozhdennykh podgrupp $PSL(2,\mathbb C)$”, Sib. matem. zhurn. (to appear)
[3] A. Masley, The Fourth Geometry Meeting, Dedicated to the Centenary of A. D. Alexandrov (August 20–24, 2012), Abstracts, PDMI, Saint-Petersburg, 2012, 72–73 http://www.pdmi.ras.ru/EIMI/2012/A100/abstr.pdf
[4] F. Grunevald, I. Mennike, Yu. Elstrodt, Gruppy, deistvuyuschie na giperbolicheskom prostranstve. Garmonicheskii analiz i teoriya chisel, MTsNMO, M., 2003 | MR | Zbl
[5] F. W. Gehring, G. J. Martin, J. Anal. Math., 63:1 (1994), 175–219 | DOI | MR | Zbl
[6] F. W. Gehring, J. P. Gilman, G. J. Martin, Commun. Contemp. Math., 3:2 (2001), 163–186 | DOI | MR | Zbl