Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2014_95_2_a13, author = {A. V. Maslej}, title = {Sufficient {Discreteness} {Conditions} for {Subgroups} of $\textrm{PSL}(2,\mathbb C)$ {Generated} by an {Involution} and a {Nonparabolic} {Element}}, journal = {Matemati\v{c}eskie zametki}, pages = {317--320}, publisher = {mathdoc}, volume = {95}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a13/} }
TY - JOUR AU - A. V. Maslej TI - Sufficient Discreteness Conditions for Subgroups of $\textrm{PSL}(2,\mathbb C)$ Generated by an Involution and a Nonparabolic Element JO - Matematičeskie zametki PY - 2014 SP - 317 EP - 320 VL - 95 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a13/ LA - ru ID - MZM_2014_95_2_a13 ER -
%0 Journal Article %A A. V. Maslej %T Sufficient Discreteness Conditions for Subgroups of $\textrm{PSL}(2,\mathbb C)$ Generated by an Involution and a Nonparabolic Element %J Matematičeskie zametki %D 2014 %P 317-320 %V 95 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a13/ %G ru %F MZM_2014_95_2_a13
A. V. Maslej. Sufficient Discreteness Conditions for Subgroups of $\textrm{PSL}(2,\mathbb C)$ Generated by an Involution and a Nonparabolic Element. Matematičeskie zametki, Tome 95 (2014) no. 2, pp. 317-320. http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a13/
[1] A. Rasskazov, Adv. Geom., 6:1 (2006), 85–92 | DOI | MR | Zbl
[2] A. V. Maslei, “Dostatochnye usloviya diskretnosti dlya dvuporozhdennykh podgrupp $PSL(2,\mathbb C)$”, Sib. matem. zhurn. (to appear)
[3] A. Masley, The Fourth Geometry Meeting, Dedicated to the Centenary of A. D. Alexandrov (August 20–24, 2012), Abstracts, PDMI, Saint-Petersburg, 2012, 72–73 http://www.pdmi.ras.ru/EIMI/2012/A100/abstr.pdf
[4] F. Grunevald, I. Mennike, Yu. Elstrodt, Gruppy, deistvuyuschie na giperbolicheskom prostranstve. Garmonicheskii analiz i teoriya chisel, MTsNMO, M., 2003 | MR | Zbl
[5] F. W. Gehring, G. J. Martin, J. Anal. Math., 63:1 (1994), 175–219 | DOI | MR | Zbl
[6] F. W. Gehring, J. P. Gilman, G. J. Martin, Commun. Contemp. Math., 3:2 (2001), 163–186 | DOI | MR | Zbl