Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2014_95_2_a10, author = {S. V. Tikhonov}, title = {Approximation of {Mixing} {Transformations}}, journal = {Matemati\v{c}eskie zametki}, pages = {282--299}, publisher = {mathdoc}, volume = {95}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a10/} }
S. V. Tikhonov. Approximation of Mixing Transformations. Matematičeskie zametki, Tome 95 (2014) no. 2, pp. 282-299. http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a10/
[1] S. V. Tikhonov, “Polnaya metrika na mnozhestve peremeshivayuschikh preobrazovanii”, UMN, 62:1 (2007), 209–210 | DOI | MR | Zbl
[2] A. del Junco, M. Lemańczyk, “Generic spectral properties of measure-preserving maps, and applications”, Proc. Amer. Math. Soc., 115:3 (1992), 725–736 | MR | Zbl
[3] V. V. Ryzhikov, “Slabye predely stepenei, prostoi spektr simmetricheskikh proizvedenii i peremeshivayuschie konstruktsii ranga 1”, Matem. sb., 198:5 (2007), 137–159 | DOI | MR | Zbl
[4] V. V. Ryzhikov, Simple Spectrum for Tensor Products of Mixing Map Powers, 2011, arXiv: 1107.4745
[5] A. I. Danilenko, A. V. Solomko, “Ergodic Abelian actions with homogeneous spectrum”, Dynamical Numbers—Interplay Between Dynamical Systems and Number Theory, Contemp. Math., 532, Amer. Math. Soc., Providence, RI, 2010, 137–148 | MR | Zbl
[6] D. V. Anosov, “O spektralnykh kratnostyakh v ergodicheskoi teorii”, Sovr. probl. matem., 3, MIAN, M., 2003, 3–85 | DOI | DOI | MR | Zbl
[7] O. Ageev, “The homogeneous spectrum problem in ergodic theory”, Invent. Math., 160:2 (2005), 417–446 | DOI | MR | Zbl
[8] P. R. Khalmosh, Lektsii po ergodicheskoi teorii, IL, M., 1959