On an Algebra of Multidimensional Integral Operators with Homogeneous-Difference Kernels
Matematičeskie zametki, Tome 95 (2014) no. 2, pp. 163-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Banach algebra generated by multidimensional integral operators with homogeneous-difference kernels is considered. A symbolic calculus is constructed for this algebra and, in terms of this calculus, necessary and sufficient conditions for the invertibility of an operator are obtained.
Keywords: multidimensional integral operator, homogeneous-difference kernel, symbolic calculus, invertibility.
@article{MZM_2014_95_2_a0,
     author = {O. G. Avsyankin},
     title = {On an {Algebra} of {Multidimensional} {Integral} {Operators} with {Homogeneous-Difference} {Kernels}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--169},
     publisher = {mathdoc},
     volume = {95},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a0/}
}
TY  - JOUR
AU  - O. G. Avsyankin
TI  - On an Algebra of Multidimensional Integral Operators with Homogeneous-Difference Kernels
JO  - Matematičeskie zametki
PY  - 2014
SP  - 163
EP  - 169
VL  - 95
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a0/
LA  - ru
ID  - MZM_2014_95_2_a0
ER  - 
%0 Journal Article
%A O. G. Avsyankin
%T On an Algebra of Multidimensional Integral Operators with Homogeneous-Difference Kernels
%J Matematičeskie zametki
%D 2014
%P 163-169
%V 95
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a0/
%G ru
%F MZM_2014_95_2_a0
O. G. Avsyankin. On an Algebra of Multidimensional Integral Operators with Homogeneous-Difference Kernels. Matematičeskie zametki, Tome 95 (2014) no. 2, pp. 163-169. http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a0/

[1] N. Karapetiants, S. Samko, Equations with Involutive Operators, Birkhäuser Boston, Boston, MA, 2001 | MR | Zbl

[2] O. G. Avsyankin, “Ob algebre parnykh integralnykh operatorov s odnorodnymi yadrami”, Matem. zametki, 73:4 (2003), 483–493 | DOI | MR | Zbl

[3] O. G. Avsyankin, N. K. Karapetyants, “Proektsionnyi metod v teorii integralnykh operatorov s odnorodnymi yadrami”, Matem. zametki, 75:2 (2004), 163–172 | DOI | MR | Zbl

[4] O. G. Avsyankin, “O $C^*$-algebre, porozhdennoi mnogomernymi integralnymi operatorami s odnorodnymi yadrami i operatorami multiplikativnogo sdviga”, Dokl. RAN, 419:6 (2008), 727–728 | MR | Zbl

[5] O. G. Avsyankin, “Mnogomernye integralnye operatory s odnorodno-raznostnymi yadrami”, Differents. uravneniya, 48:1 (2012), 64–69 | Zbl

[6] V. N. Berkovich, “Nestatsionarnaya smeshannaya zadacha dinamiki neodnorodno uprugoi klinovidnoi sredy”, Ekologicheskii vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo soobschestva, 2005, no. 3, 17–21

[7] N. Danford, Dzh. Shvarts, Lineinye operatory. T. 2. Spektralnaya teoriya, IL, M., 1966 | MR | Zbl

[8] I. M. Gelfand, D. A. Raikov, G. E. Shilov, Kommutativnye normirovannye koltsa, Sovremennye problemy matematiki, Fizmatgiz, M., 1960 | MR | Zbl