Generalizations of Hardy-Type Inequalities in the Form of Dubinskii
Matematičeskie zametki, Tome 95 (2014) no. 1, pp. 109-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

Hardy-type inequalities with power and logarithmic singularities are considered. New one-dimensional inequalities and their multidimensional analogs are proved.
Keywords: Hardy-type inequality, Dubinskii's inequality, Hardy integral, locally integrable function.
@article{MZM_2014_95_1_a8,
     author = {R. G. Nasibullin},
     title = {Generalizations of {Hardy-Type} {Inequalities} in the {Form} of {Dubinskii}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {109--122},
     publisher = {mathdoc},
     volume = {95},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a8/}
}
TY  - JOUR
AU  - R. G. Nasibullin
TI  - Generalizations of Hardy-Type Inequalities in the Form of Dubinskii
JO  - Matematičeskie zametki
PY  - 2014
SP  - 109
EP  - 122
VL  - 95
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a8/
LA  - ru
ID  - MZM_2014_95_1_a8
ER  - 
%0 Journal Article
%A R. G. Nasibullin
%T Generalizations of Hardy-Type Inequalities in the Form of Dubinskii
%J Matematičeskie zametki
%D 2014
%P 109-122
%V 95
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a8/
%G ru
%F MZM_2014_95_1_a8
R. G. Nasibullin. Generalizations of Hardy-Type Inequalities in the Form of Dubinskii. Matematičeskie zametki, Tome 95 (2014) no. 1, pp. 109-122. http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a8/

[1] G. G. Khardi, Dzh. E. Littlvud, G. Polia, Neravenstva, IL, M., 1948 | MR | Zbl

[2] Yu. A. Dubinskii, “Ob odnom neravenstve tipa Khardi i ego prilozheniyakh”, Teoriya funktsii i differentsialnye uravneniya, Tr. MIAN, 269, MAIK, M., 2010, 112–132 | MR | Zbl

[3] B. G. Pachpatte, “A note on certain inequalities related to Hardy's inequality”, Indian J. Pure Appl. Math., 23:11 (1992), 773–776 | MR | Zbl

[4] J. E. Peçarić, E. R. Love, “Still more generalization of Hardy's inequality”, J. Austral. Math. Soc. Ser. A, 59:2 (1995), 214–224 | DOI | MR | Zbl

[5] M. Del Pino, J. Dolbeault, S. Filippas, A. Tertikas, “A logarithmic Hardy inequality”, J. Funct. Anal., 259:8 (2010), 2045–2072 | DOI | MR | Zbl

[6] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev, “A geometrical version of Hardy's inequality”, J. Funct. Anal., 189:2 (2002), 539–548 | DOI | MR | Zbl

[7] F. G. Avkhadiev, “Neravenstva tipa Khardi v ploskikh i prostranstvennykh otkrytykh mnozhestvakh”, Funktsionalnye prostranstva, teoriya priblizhenii, nelineinyi analiz, Sbornik statei, Tr. MIAN, 255, Nauka, M., 2006, 8–18 | MR

[8] F. G. Avkhadiev, R. G. Nasibullin, I. K. Shafigullin, “Neravenstva tipa Khardi so stepennymi i logarifmicheskimi vesami v oblastyakh evklidova prostranstva”, Izv. vuzov. Matem., 2011, no. 9, 90–94 | MR | Zbl

[9] F. G. Avkhadiev, “Hardy type inequalities in higher dimensions with explicit estimate of constants”, Lobachevskii J. Math., 21 (2006), 3–31 | MR | Zbl