On Commutative Unary Algebras with Totally Ordered Congruence Lattice
Matematičeskie zametki, Tome 95 (2014) no. 1, pp. 80-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

The class of all commutative unary algebras (with arbitrarily many operations) with totally ordered congruence lattice is described.
Keywords: commutative unary algebra, totally ordered congruence lattice, unar, reduct, characteristic semigroup.
@article{MZM_2014_95_1_a6,
     author = {A. V. Kartashova},
     title = {On {Commutative} {Unary} {Algebras} with {Totally} {Ordered} {Congruence} {Lattice}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {80--92},
     publisher = {mathdoc},
     volume = {95},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a6/}
}
TY  - JOUR
AU  - A. V. Kartashova
TI  - On Commutative Unary Algebras with Totally Ordered Congruence Lattice
JO  - Matematičeskie zametki
PY  - 2014
SP  - 80
EP  - 92
VL  - 95
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a6/
LA  - ru
ID  - MZM_2014_95_1_a6
ER  - 
%0 Journal Article
%A A. V. Kartashova
%T On Commutative Unary Algebras with Totally Ordered Congruence Lattice
%J Matematičeskie zametki
%D 2014
%P 80-92
%V 95
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a6/
%G ru
%F MZM_2014_95_1_a6
A. V. Kartashova. On Commutative Unary Algebras with Totally Ordered Congruence Lattice. Matematičeskie zametki, Tome 95 (2014) no. 1, pp. 80-92. http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a6/

[1] J. Berman, “On the congruence lattices of unary algebras”, Proc. Amer. Math. Soc., 36:1 (1972), 34–38 | DOI | MR | Zbl

[2] D. P. Egorova, L. A. Skornyakov, “O strukture kongruentsii unarnoi algebry”, Uporyadochennye mnozhestva i reshetki, 4, Mezhvuz. nauch. sb., Izd-vo Saratovsk. un-ta, Saratov, 1977, 28–40 | MR | Zbl

[3] D. P. Egorova, “Struktura kongruentsii unarnoi algebry”, Uporyadochennye mnozhestva i reshetki, 5, Mezhvuz. nauch. sb., Izd-vo Saratovsk. un-ta, Saratov, 1978, 11–44 | MR | Zbl

[4] G. Grätzer, E. T. Schmidt, “Characterizations of congruence lattices of abstract algebras”, Acta Sci. Math. (Szeged), 24 (1963), 34–59 | MR | Zbl

[5] J. Johnson, R. L. Seifert, A Survey of Multi-Unary Algebras, Mimeographed seminar notes, University of California, Berkeley, CA, 1967

[6] Z. Ésik, B. Imreh, “Subdirectly irreducible commutative automata”, Acta Cybernet., 5:3 (1981), 251–260 | MR | Zbl

[7] A. V. Kartashova, “O kommutativnykh unarnykh algebrakh s lineino uporyadochennoi reshetkoi kongruentsii”, Algebra i matematicheskaya logika, Kazanskii (Privolzhskii) federalnyi un-t, Kazan, 2011, 104–106

[8] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR

[9] Z. Ésik, B. Imreh, “Remarks on finite commutative automata”, Acta Cybernet., 5:3 (1981), 143–146 | MR | Zbl

[10] S. Bogdanović, M. Ćirić, T. Petrović, B. Imreh, M. Steinby, “Traps, cores, extensions and subdirect decompositions of unary algebras”, Fund. Inform., 38:1-2 (1999), 51–60 | MR | Zbl

[11] L. Fuchs, Abelian Groups, Publ. House of the Hungar. Acad. of Sci., Budapest, 1958 | MR

[12] V. K. Kartashov, “Nezavisimye sistemy porozhdayuschikh i svoistvo Khopfa dlya unarnykh algebr”, Diskret. matem., 20:4 (2008), 79–84 | DOI | MR | Zbl

[13] A. V. Kartashova, “O konechnykh reshetkakh topologii kommutativnykh unarnykh algebr”, Diskret. matem., 21:3 (2009), 119–131 | DOI | MR