Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2014_95_1_a5, author = {S. M. Zagorodnyuk}, title = {On the {Density} of {Polynomials} in {Some} {Spaces~}$L^2(M)$}, journal = {Matemati\v{c}eskie zametki}, pages = {63--79}, publisher = {mathdoc}, volume = {95}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a5/} }
S. M. Zagorodnyuk. On the Density of Polynomials in Some Spaces~$L^2(M)$. Matematičeskie zametki, Tome 95 (2014) no. 1, pp. 63-79. http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a5/
[1] N. K. Nikolski, Operators, Functions and Systems: an Easy Reading. Vol. 1. Hardy, Hankel, and Toeplitz, Math. Surveys Monogr., 92, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl
[2] S. N. Mergelyan, “O polnote sistem analiticheskikh funktsii”, UMN, 8:4 (1953), 3–63 | MR | Zbl
[3] A. I. Markushevich, Teoriya analiticheskikh funktsii. T. 2. Dalneishee postroenie teorii, Nauka, M., 1968 | MR | Zbl
[4] N. I. Akhiezer, Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, Fizmatgiz, M., 1961 | MR | Zbl
[5] N. I. Akhiezer, Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR | Zbl
[6] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR | Zbl
[7] L. Klëts, S. M. Zagorodnyuk, “Priblizhenie v srednem matrichnoznachnymi mnogochlenami na spryamlyaemykh krivykh”, Ukr. matem. vestn., 4:1 (2007), 1–20 | MR
[8] S. M. Zagorodnyuk, L. Klëts, “Nekotorye interpolyatsionnye zadachi v prostranstvakh $L^p$, $0
\infty$, na spryamlyaemykh krivykh”, Ukr. matem. vestn., 5:2 (2008), 258–279 | MR[9] F. Marcellán, S. M. Zagorodnyuk, “Density of polynomials in some $L^2$ spaces on radial rays in the complex plane”, Linear Algebra Appl., 435:1 (2011), 128–146 | DOI | MR | Zbl
[10] P. Lopez-Rodriguez, “The Nevanlinna parametrization for a matrix moment problem”, Math. Scand., 89:2 (2001), 245–267 | MR | Zbl
[11] S. M. Zagorodnyuk, “Devinatz's moment problem: a description of all solutions”, J. Operator Theory, 68:2 (2012), 515–541 | MR | Zbl
[12] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, T. 1, Vischa shkola, Kharkov, 1977 | MR
[13] M. Rosenberg, “The square-integrability of matrix-valued functions with respect to a non-negative Hermitian measure”, Duke Math. J., 31:2 (1964), 291–298 | DOI | MR | Zbl
[14] M. M. Malamud, S. M. Malamud, “Spektralnaya teoriya operatornykh mer v gilbertovom prostranstve”, Algebra i analiz, 15:3 (2003), 1–77 | MR | Zbl
[15] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningradsk. un-ta, Leningrad, 1980 | MR
[16] S. M. Zagorodnyuk, “A description of all solutions of the matrix Hamburger moment problem in a general case”, Methods Funct. Anal. Topology, 16:3 (2010), 271–288 | MR | Zbl
[17] A. V. Shtraus, “Obobschennye rezolventy simmetricheskikh operatorov”, Izv. AN SSSR. Ser. matem., 18:1 (1954), 51–86 | MR | Zbl