On the Density of Polynomials in Some Spaces~$L^2(M)$
Matematičeskie zametki, Tome 95 (2014) no. 1, pp. 63-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

The question of the density of polynomials in some spaces $L^2(M)$ is studied. The following two variants of the measure $M$ and the polynomials are considered: (1) an $N\times N$ matrix-valued nonnegative Borel measure on $\mathbb{R}$ and vector-valued polynomials $p(x)=(p_0(x),p_1(x),\dots,p_{N-1}(x))$, where the $p_j(x)$ are complex polynomials and $N\in \mathbb{N}$; (2) a scalar nonnegative Borel measure on the strip $\Pi=\{(x,\varphi): x\in \mathbb{R}, \, \varphi\in [-\pi,\pi)\}$, and power-trigonometric polynomials $p(x,\varphi)=\sum_{m=0}^\infty\sum_{n=-\infty}^\infty \alpha_{m,n}x^m e^{in\varphi}$, $\alpha_{m,n}\in \mathbb{C}$, where only finitely many $\alpha_{m,n}$ are nonzero. We show that the polynomials are dense in $L^2(M)$ if and only if $M$ is the canonical solution of the corresponding moment problem. It should be stressed that we do not impose any additional constraints on the measure, except the existence of moments. Using the known descriptions of the canonical solutions,, we obtain conditions on the density of polynomials in $L^2(M)$. Simultaneously, we establish a model for commuting self-adjoint and unitary operators with spectrum of finite multiplicity.
Keywords: matrix-valued nonnegative Borel measure, Hamburger moment problem, commuting self-adjoint and unitary operators, vector-valued polynomial, power-trigonometric polynomial, spectrum of finite multiplicity.
Mots-clés : Devinatz moment problem
@article{MZM_2014_95_1_a5,
     author = {S. M. Zagorodnyuk},
     title = {On the {Density} of {Polynomials} in {Some} {Spaces~}$L^2(M)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {63--79},
     publisher = {mathdoc},
     volume = {95},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a5/}
}
TY  - JOUR
AU  - S. M. Zagorodnyuk
TI  - On the Density of Polynomials in Some Spaces~$L^2(M)$
JO  - Matematičeskie zametki
PY  - 2014
SP  - 63
EP  - 79
VL  - 95
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a5/
LA  - ru
ID  - MZM_2014_95_1_a5
ER  - 
%0 Journal Article
%A S. M. Zagorodnyuk
%T On the Density of Polynomials in Some Spaces~$L^2(M)$
%J Matematičeskie zametki
%D 2014
%P 63-79
%V 95
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a5/
%G ru
%F MZM_2014_95_1_a5
S. M. Zagorodnyuk. On the Density of Polynomials in Some Spaces~$L^2(M)$. Matematičeskie zametki, Tome 95 (2014) no. 1, pp. 63-79. http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a5/

[1] N. K. Nikolski, Operators, Functions and Systems: an Easy Reading. Vol. 1. Hardy, Hankel, and Toeplitz, Math. Surveys Monogr., 92, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[2] S. N. Mergelyan, “O polnote sistem analiticheskikh funktsii”, UMN, 8:4 (1953), 3–63 | MR | Zbl

[3] A. I. Markushevich, Teoriya analiticheskikh funktsii. T. 2. Dalneishee postroenie teorii, Nauka, M., 1968 | MR | Zbl

[4] N. I. Akhiezer, Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, Fizmatgiz, M., 1961 | MR | Zbl

[5] N. I. Akhiezer, Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR | Zbl

[6] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR | Zbl

[7] L. Klëts, S. M. Zagorodnyuk, “Priblizhenie v srednem matrichnoznachnymi mnogochlenami na spryamlyaemykh krivykh”, Ukr. matem. vestn., 4:1 (2007), 1–20 | MR

[8] S. M. Zagorodnyuk, L. Klëts, “Nekotorye interpolyatsionnye zadachi v prostranstvakh $L^p$, $0

\infty$, na spryamlyaemykh krivykh”, Ukr. matem. vestn., 5:2 (2008), 258–279 | MR

[9] F. Marcellán, S. M. Zagorodnyuk, “Density of polynomials in some $L^2$ spaces on radial rays in the complex plane”, Linear Algebra Appl., 435:1 (2011), 128–146 | DOI | MR | Zbl

[10] P. Lopez-Rodriguez, “The Nevanlinna parametrization for a matrix moment problem”, Math. Scand., 89:2 (2001), 245–267 | MR | Zbl

[11] S. M. Zagorodnyuk, “Devinatz's moment problem: a description of all solutions”, J. Operator Theory, 68:2 (2012), 515–541 | MR | Zbl

[12] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, T. 1, Vischa shkola, Kharkov, 1977 | MR

[13] M. Rosenberg, “The square-integrability of matrix-valued functions with respect to a non-negative Hermitian measure”, Duke Math. J., 31:2 (1964), 291–298 | DOI | MR | Zbl

[14] M. M. Malamud, S. M. Malamud, “Spektralnaya teoriya operatornykh mer v gilbertovom prostranstve”, Algebra i analiz, 15:3 (2003), 1–77 | MR | Zbl

[15] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningradsk. un-ta, Leningrad, 1980 | MR

[16] S. M. Zagorodnyuk, “A description of all solutions of the matrix Hamburger moment problem in a general case”, Methods Funct. Anal. Topology, 16:3 (2010), 271–288 | MR | Zbl

[17] A. V. Shtraus, “Obobschennye rezolventy simmetricheskikh operatorov”, Izv. AN SSSR. Ser. matem., 18:1 (1954), 51–86 | MR | Zbl