On a Class of Impulsive Functional-Differential Equations with Nonatomic Difference Operator
Matematičeskie zametki, Tome 95 (2014) no. 1, pp. 37-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish conditions for the existence and uniqueness of the solutions of nonlinear functional-differential equations with impulsive action in a Banach space. The equation under consideration is not solved for the derivative. It is assumed that the characteristic operator pencil corresponding to the linear part of the equation satisfies a constraint of parabolic type in the right half-plane. Applications to partial functional-differential equations not of Kovalevskaya type are considered.
Keywords: impulsive functional-differential equation, nonatomic difference operator, equation of Sobolev type, equation not of Kovalevskaya type, Sobolev space, operator pencil, Banach space.
@article{MZM_2014_95_1_a3,
     author = {L. A. Vlasenko and A. G. Rutkas},
     title = {On a {Class} of {Impulsive} {Functional-Differential} {Equations} with {Nonatomic} {Difference} {Operator}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {37--49},
     publisher = {mathdoc},
     volume = {95},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a3/}
}
TY  - JOUR
AU  - L. A. Vlasenko
AU  - A. G. Rutkas
TI  - On a Class of Impulsive Functional-Differential Equations with Nonatomic Difference Operator
JO  - Matematičeskie zametki
PY  - 2014
SP  - 37
EP  - 49
VL  - 95
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a3/
LA  - ru
ID  - MZM_2014_95_1_a3
ER  - 
%0 Journal Article
%A L. A. Vlasenko
%A A. G. Rutkas
%T On a Class of Impulsive Functional-Differential Equations with Nonatomic Difference Operator
%J Matematičeskie zametki
%D 2014
%P 37-49
%V 95
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a3/
%G ru
%F MZM_2014_95_1_a3
L. A. Vlasenko; A. G. Rutkas. On a Class of Impulsive Functional-Differential Equations with Nonatomic Difference Operator. Matematičeskie zametki, Tome 95 (2014) no. 1, pp. 37-49. http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a3/

[1] Dzh. Kheil, Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR | Zbl

[2] N. V. Azbelev, V. P. Maksimov, L. F. Rakhmatulina, Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR | Zbl

[3] A. L. Skubachevskii, Elliptic Functional Differential Equations and Applications, Oper. Theory Adv. Appl., 91, Birkhäuser-Verlag, Basel, 1997 | MR | Zbl

[4] A. D. Myshkis, “Smeshannye funktsionalno-differentsialnye uravneniya”, Novye problemy teorii funktsionalno-differentsialnykh uravnenii, SMFN, 4, MAI, M., 2003, 5–120 | MR | Zbl

[5] V. V. Vlasov, D. A. Medvedev, “Funktsionalno-differentsialnye uravneniya v prostranstvakh Soboleva i svyazannye s nimi voprosy spektralnoi teorii”, Funktsionalno-differentsialnye uravneniya, SMFN, 30, RUDN, M., 2008, 3–173 | MR

[6] F. Kappel, K. P. Zhang, “On neutral functional differential equations with nonatomic difference operator”, J. Math. Anal. Appl., 113:2 (1986), 311–343 | DOI | MR | Zbl

[7] E. M. Fernández Berdaguer, “Solutions for a class of neutral differential equations with nonatomic D-operator”, Appl. Math. Optim., 14 (1986), 95–105 | DOI | MR | Zbl

[8] A. G. Rutkas, L. A. Vlasenko, “Time-domain descriptor models for circuits with multiconductor transmission lines and lumped elements”, Ultrawideband and Ultrashort Impulse Signals, Proceedings of 5-th IEEE International Conference (September 6–10, 2010, Sevastopol, Ukraine), 2010, 102–104

[9] J. H. Lightbourne III, S. M. Rankin III, “A partial functional differential equation of Sobolev type”, J. Math. Anal. Appl., 93:2 (1983), 328–337 | DOI | MR | Zbl

[10] S. L. Sobolev, “Zadacha Koshi dlya chastnogo sluchaya sistem, ne prinadlezhaschikh tipu Kovalevskoi”, Dokl. AN SSSR, 82:2 (1952), 205–208 | MR | Zbl

[11] A. G. Kostyuchenko, A. A. Shkalikov, M. Yu. Yurkin, “Ob ustoichivosti volchka s polostyu, zapolnennoi vyazkoi zhidkostyu”, Funkts. analiz i ego pril., 32:2 (1998), 36–55 | DOI | MR | Zbl

[12] L. A. Beklaryan, “O kvazibeguschikh volnakh”, Matem. sb., 201:12 (2010), 21–68 | DOI | MR | Zbl

[13] A. D. Myshkis, “Sistemy s posledeistviem i relaksatsiei”, PMM, 58:6 (1994), 141–144 | MR

[14] A. Anokhin, L. Berezansky, E. Braverman, “Exponential stability of linear delay impulsive differential equations”, J. Math. Anal. Appl., 193:3 (1995), 923–941 | DOI | MR | Zbl

[15] G. F. Webb, “Functional differential equations and nonlinear semigroups in $L^p$-spaces”, J. Differential Equations, 20:1 (1976), 71–89 | DOI | MR | Zbl

[16] L. A. Vlasenko, “An optimal control problem for Sobolev retarded systems”, Funct. Differ. Equ., 17:3-4 (2010), 401–412 | MR | Zbl

[17] R. O. Griniv, S. Yu. Dobrokhotov, A. A. Shkalikov, “Operatornaya model zadachi o kolebaniyakh zhidkosti na uprugom osnovanii”, Matem. zametki, 68:1 (2000), 66–81 | DOI | MR | Zbl

[18] L. A. Vlasenko, A. D. Myshkis, A. G. Rutkas, “Ob odnom klasse differentsialnykh uravnenii parabolicheskogo tipa s impulsnymi vozdeistviyami”, Differents. uravneniya, 44:2 (2008), 222–231 | MR | Zbl

[19] S. G. Krein, Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR | Zbl

[20] K. Iosida, Funktsionalnyi analiz, Mir, M., 1967 | MR | Zbl

[21] A. G. Rutkas, “Zadacha Koshi dlya uravneniya $Ax'(t)+Bx(t)=f(t)$”, Differents. uravneniya, 11:11 (1975), 1996–2010 | MR | Zbl

[22] A. G. Rutkas, L. A. Vlasenko, “Existence, uniqueness and continuous dependence for implicit semilinear functional differential equations”, Nonlinear Anal., Theory Methods Appl., 55:1-2 (2003), 125–139 | DOI | MR | Zbl

[23] E. Khille, R. Fillips, Funktsionalnyi analiz i polugruppy, IL, M., 1962 | MR | Zbl

[24] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci., 44, Springer-Verlag, New York, 1983 | MR | Zbl

[25] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR | Zbl

[26] L. M. Brekhovskikh, V. V. Goncharov, Vvedenie v mekhaniku sploshnykh sred (v prilozhenii k teorii voln), Nauka, M., 1982

[27] D. Khenri, Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR | Zbl