Localization for Multiple Fourier Series with ``$J_k$-Lacunary Sequence of Partial Sums'' in Orlicz Classes
Matematičeskie zametki, Tome 95 (2014) no. 1, pp. 26-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain structural and geometric characteristics of sets on which weak generalized localization almost everywhere is valid for multiple trigonometric Fourier series of functions in the classes $L(\log^+L)^{3k+2}(\mathbb T^N)$, $1\le k\le N-2$, $N\ge 3$, in the case where the rectangular partial sums of these series have a “number” in which exactly $k$ components are terms of lacunary sequences.
Keywords: trigonometric Fourier series, lacunary sequence of partial sums, localization for Fourier series, Orlicz class of functions
Mots-clés : Lebesgue measure.
@article{MZM_2014_95_1_a2,
     author = {I. L. Bloshanskii and Z. N. Tsukareva},
     title = {Localization for {Multiple} {Fourier} {Series} with ``$J_k${-Lacunary} {Sequence} of {Partial} {Sums''} in {Orlicz} {Classes}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {26--36},
     publisher = {mathdoc},
     volume = {95},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a2/}
}
TY  - JOUR
AU  - I. L. Bloshanskii
AU  - Z. N. Tsukareva
TI  - Localization for Multiple Fourier Series with ``$J_k$-Lacunary Sequence of Partial Sums'' in Orlicz Classes
JO  - Matematičeskie zametki
PY  - 2014
SP  - 26
EP  - 36
VL  - 95
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a2/
LA  - ru
ID  - MZM_2014_95_1_a2
ER  - 
%0 Journal Article
%A I. L. Bloshanskii
%A Z. N. Tsukareva
%T Localization for Multiple Fourier Series with ``$J_k$-Lacunary Sequence of Partial Sums'' in Orlicz Classes
%J Matematičeskie zametki
%D 2014
%P 26-36
%V 95
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a2/
%G ru
%F MZM_2014_95_1_a2
I. L. Bloshanskii; Z. N. Tsukareva. Localization for Multiple Fourier Series with ``$J_k$-Lacunary Sequence of Partial Sums'' in Orlicz Classes. Matematičeskie zametki, Tome 95 (2014) no. 1, pp. 26-36. http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a2/

[1] I. L. Bloshanskii, “O kriteriyakh slaboi obobschennoi lokalizatsii v $n$-mernom prostranstve”, Dokl. AN SSSR, 271:6 (1983), 1294–1298 | MR | Zbl

[2] I. L. Bloshanskii, O. V. Lifantseva, “Slabaya obobschennaya lokalizatsiya dlya kratnykh ryadov Fure, pryamougolnye chastichnye summy kotorykh rassmatrivayutsya po nekotoroi podposledovatelnosti”, Matem. zametki, 84:3 (2008), 334–347 | DOI | MR | Zbl

[3] I. L. Bloshanskii, O. V. Lifantseva, “O lokalizatsii dlya kratnykh ryadov Fure s lakunarnoi posledovatelnostyu chastichnykh summ v klasse $L_1$”, Materialy 15-i Saratovskoi zimnei shkoly, Izd-vo SGU, Saratov, 2010, 29–30

[4] I. Bloshanskii, O. Lifantseva, Z. Tsukareva, “On localization for multiple Fourier series with lacunary sequences of partial sums in Orlicz spaces”, The 8-th Congress of the International Society for Analysis, its Applications, and Computations, Peoples' Friendship University of Russia, Moscow, 2011, 399–400

[5] Z. N. Tsukareva, “Slabaya obobschennaya lokalizatsiya dlya kratnykh ryadov Fure s lakunarnoi posledovatelnostyu chastichnykh summ v klassakh Orlicha”, Vestn. Mosk. gos. obl. un-ta. Ser. Fiz., matem., 2012, no. 1, 18–22, M.

[6] R. A. Hunt, “On the convergence of Fourier series”, Orthogonal Expansions and their Continuous Analogues (Proc. Conf., Edwardsville, Ill., 1967), Southern Illinois Univ. Press, Carbondale, Ill, 1968, 235–255 | MR | Zbl

[7] D. K. Sanadze, Sh. V. Kheladze, “O skhodimosti i raskhodimosti kratnykh ryadov Fure–Uolsha”, Tr. Tbilissk. matem. in-ta AN Gruz. SSR, 55, 1977, 93–106 | MR | Zbl

[8] I. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[9] H. Whitney, “Analytic extensions of differentiable functions defined in closed sets”, Trans. Amer. Math. Soc., 36:1 (1934), 63–89 | DOI | MR | Zbl