Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2014_95_1_a12, author = {E. V. Nikitin}, title = {Comparison of {Two} {Definitions} of {Besov} {Classes} on {Infinite-Dimensional} {Spaces}}, journal = {Matemati\v{c}eskie zametki}, pages = {150--153}, publisher = {mathdoc}, volume = {95}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a12/} }
E. V. Nikitin. Comparison of Two Definitions of Besov Classes on Infinite-Dimensional Spaces. Matematičeskie zametki, Tome 95 (2014) no. 1, pp. 150-153. http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a12/
[1] E. E. Ero, V. I. Bogachev, P. Lesko, Dokl. RAN, 391:3 (2003), 320–323 | MR | Zbl
[2] E. V. Nikitin, Dokl. RAN, 452:2 (2013), 130–135
[3] S. Wanatabe, Probab. Theory Related Fields, 95:2 (1993), 175–198 | DOI | MR | Zbl
[4] E. V. Nikitin, Matem. zametki, 93:6 (2013), 951–953 | DOI | Zbl
[5] V. I. Bogachev, Gaussian Measures, Math. Surveys Monogr., 62, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl
[6] V. I. Bogachev, Differentiable Measures and the Malliavin Calculus, Math. Surveys Monogr., 164, Amer. Math. Soc., Providence, RI, 2010 | MR | Zbl
[7] V. I. Bogachev, J. Math. Sci. (New York), 87:4 (1997), 3577–3731 | DOI | MR | Zbl
[8] I. Shigekawa, Stochastic Analysis, Transl. Math. Monogr., 224, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl
[9] S. Fang, Introduction to Malliavin calculus, Tsinghua Univ. Press, Beijing, 2004
[10] Kh. Tribel, Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR | Zbl
[11] R. A. Adams, J. J. F. Fournier, Sobolev Spaces, Pure Appl. Math. (Amst.), 140, Academic Press, New York, 2003 | MR | Zbl
[12] R. A. Adams, Sobolev Spaces, Pure Appl. Math., 65, Academic Press, New York, 1975 | MR | Zbl