On the Finiteness of the Brauer Group of an Arithmetic Scheme
Matematičeskie zametki, Tome 95 (2014) no. 1, pp. 136-149
Voir la notice de l'article provenant de la source Math-Net.Ru
The Artin conjecture on the finiteness of the Brauer group is shown to hold for an arithmetic model of a K3 surface over a number field $k$. The Brauer group of an arithmetic model of an Enriques surface over a sufficiently large number field is shown to be a $2$-group. For almost all prime numbers $l$, the triviality of the $l$-primary component of the Brauer group of an arithmetic model of a smooth projective simply connected Calabi–Yau variety $V$ over a number field $k$ under the assumption that $V(k)\neq\varnothing$ is proved.
Keywords:
Brauer group, arithmetic model, K3 surface, Calabi–Yau variety, Artin conjecture.
Mots-clés : Enriques surface
Mots-clés : Enriques surface
@article{MZM_2014_95_1_a11,
author = {S. G. Tankeev},
title = {On the {Finiteness} of the {Brauer} {Group} of an {Arithmetic} {Scheme}},
journal = {Matemati\v{c}eskie zametki},
pages = {136--149},
publisher = {mathdoc},
volume = {95},
number = {1},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a11/}
}
S. G. Tankeev. On the Finiteness of the Brauer Group of an Arithmetic Scheme. Matematičeskie zametki, Tome 95 (2014) no. 1, pp. 136-149. http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a11/