On the Finiteness of the Brauer Group of an Arithmetic Scheme
Matematičeskie zametki, Tome 95 (2014) no. 1, pp. 136-149

Voir la notice de l'article provenant de la source Math-Net.Ru

The Artin conjecture on the finiteness of the Brauer group is shown to hold for an arithmetic model of a K3 surface over a number field $k$. The Brauer group of an arithmetic model of an Enriques surface over a sufficiently large number field is shown to be a $2$-group. For almost all prime numbers $l$, the triviality of the $l$-primary component of the Brauer group of an arithmetic model of a smooth projective simply connected Calabi–Yau variety $V$ over a number field $k$ under the assumption that $V(k)\neq\varnothing$ is proved.
Keywords: Brauer group, arithmetic model, K3 surface, Calabi–Yau variety, Artin conjecture.
Mots-clés : Enriques surface
@article{MZM_2014_95_1_a11,
     author = {S. G. Tankeev},
     title = {On the {Finiteness} of the {Brauer} {Group} of an {Arithmetic} {Scheme}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {136--149},
     publisher = {mathdoc},
     volume = {95},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a11/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On the Finiteness of the Brauer Group of an Arithmetic Scheme
JO  - Matematičeskie zametki
PY  - 2014
SP  - 136
EP  - 149
VL  - 95
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a11/
LA  - ru
ID  - MZM_2014_95_1_a11
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On the Finiteness of the Brauer Group of an Arithmetic Scheme
%J Matematičeskie zametki
%D 2014
%P 136-149
%V 95
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a11/
%G ru
%F MZM_2014_95_1_a11
S. G. Tankeev. On the Finiteness of the Brauer Group of an Arithmetic Scheme. Matematičeskie zametki, Tome 95 (2014) no. 1, pp. 136-149. http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a11/