On the Finiteness of the Brauer Group of an Arithmetic Scheme
Matematičeskie zametki, Tome 95 (2014) no. 1, pp. 136-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Artin conjecture on the finiteness of the Brauer group is shown to hold for an arithmetic model of a K3 surface over a number field $k$. The Brauer group of an arithmetic model of an Enriques surface over a sufficiently large number field is shown to be a $2$-group. For almost all prime numbers $l$, the triviality of the $l$-primary component of the Brauer group of an arithmetic model of a smooth projective simply connected Calabi–Yau variety $V$ over a number field $k$ under the assumption that $V(k)\neq\varnothing$ is proved.
Keywords: Brauer group, arithmetic model, K3 surface, Calabi–Yau variety, Artin conjecture.
Mots-clés : Enriques surface
@article{MZM_2014_95_1_a11,
     author = {S. G. Tankeev},
     title = {On the {Finiteness} of the {Brauer} {Group} of an {Arithmetic} {Scheme}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {136--149},
     publisher = {mathdoc},
     volume = {95},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a11/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On the Finiteness of the Brauer Group of an Arithmetic Scheme
JO  - Matematičeskie zametki
PY  - 2014
SP  - 136
EP  - 149
VL  - 95
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a11/
LA  - ru
ID  - MZM_2014_95_1_a11
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On the Finiteness of the Brauer Group of an Arithmetic Scheme
%J Matematičeskie zametki
%D 2014
%P 136-149
%V 95
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a11/
%G ru
%F MZM_2014_95_1_a11
S. G. Tankeev. On the Finiteness of the Brauer Group of an Arithmetic Scheme. Matematičeskie zametki, Tome 95 (2014) no. 1, pp. 136-149. http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a11/

[1] Dzh. Miln, Etalnye kogomologii, Mir, M., 1983 | MR | Zbl

[2] J. Tate, “Algebraic cycles and poles of zeta functions”, Arithmetical Algebraic Geometry, Harper Row, New York, 1965, 93–110 | MR | Zbl

[3] S. G. Tankeev, “O gruppe Brauera arifmeticheskoi skhemy. II”, Izv. RAN. Ser. matem., 67:5 (2003), 155–176 | DOI | MR | Zbl

[4] J.-L. Colliot-Thélène, A. N. Skorobogatov, “Good reduction of the Brauer–Manin obstruction”, Trans. Amer. Math. Soc., 365:2 (2013), 579–590 | DOI | MR | Zbl

[5] A. N. Skorobogatov, Yu. G. Zarhin, “A finiteness theorem for the Brauer group of Abelian varieties and K3 surfaces”, J. Algebraic Geometry, 17:3 (2008), 481–502 | DOI | MR | Zbl

[6] S. G. Tankeev, “O gruppe Brauera arifmeticheskoi skhemy”, Izv. RAN. Ser. matem., 65:2 (2001), 155–186 | DOI | MR | Zbl

[7] J.-L. Colliot-Thélène, A. N. Skorobogatov, P. Swinnerton-Dyer, “Hasse principle for pencils of curves of genus one whose Jacobians have rational $2$-division points”, Invent. Math., 134:3 (1998), 579–650 | DOI | MR | Zbl

[8] Algebraicheskaya teoriya chisel, eds. Dzh. Kassels, A. Frëlikh, Mir, M., 1969 | MR | Zbl

[9] R. Godeman, Algebraicheskaya topologiya i teoriya puchkov, IL, M., 1961 | MR | Zbl

[10] S. Lang, A. Weil, “Number of points of varieties in finite fields”, Amer. J. Math., 76:4 (1954), 819–827 | DOI | MR | Zbl

[11] M. Atya, I. Makdonald, Vvedenie v kommutativnuyu algebru, Mir, M., 1972 | MR | Zbl

[12] A. N. Skorobogatov, “Descent on fibrations over the projective line”, Amer. J. Math., 118:5 (1996), 905–923 | DOI | MR | Zbl

[13] N. Burbaki, Algebra. Mnogochleny i polya. Uporyadochennye gruppy, Elementy matematiki, Nauka, M., 1965 | MR

[14] F. Griffits, Dzh. Kharris, Printsipy algbraicheskoi geometrii, T. 1, 2, Mir, M., 1982 | MR | Zbl

[15] A. T. Fomenko, D. B. Fuks, Kurs gomotopicheskoi topologii, Nauka, M., 1989 | MR | Zbl

[16] A. Veil, Osnovy teorii chisel, Mir, M., 1972 | MR | Zbl

[17] A. Grothendieck, “Le groupe de Brauer. I. Algèbres d'Azumaya et interprétations diverses”, Dix Exposés sur la Cohomologie des Schémas, North-Holland, Amsterdam, 1968, 46–66 | MR | Zbl