On the Dichotomy of Linear Autonomous Systems of Functional-Differential Equations
Matematičeskie zametki, Tome 95 (2014) no. 1, pp. 129-135.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the exponential dichotomy of solutions to the Cauchy problem for a subclass of linear autonomous systems of functional-differential equations of neutral type by reducing this problem to the same problem for a difference equation of the form $x_{n}=\Gamma x_{n-1}$ with a compact operator $\Gamma$, in Banach space. The spectrum of $\Gamma$ is described. The dichotomy of the solutions of the Cauchy problem is a consequence of the dichotomy of the spectrum. In a particular case, the result obtained provides a criterion for the dichotomy for a linear autonomous system of functional-differential equations of retarded type of general form.
Keywords: dichotomy of a linear autonomous system, Cauchy problem, system of functional-differential equations, functional-differential equation of retarded (neutral) type, Banach space, spectrum.
@article{MZM_2014_95_1_a10,
     author = {R. K. Romanovskii and E. M. Nazaruk},
     title = {On the {Dichotomy} of {Linear} {Autonomous} {Systems} of {Functional-Differential} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {129--135},
     publisher = {mathdoc},
     volume = {95},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a10/}
}
TY  - JOUR
AU  - R. K. Romanovskii
AU  - E. M. Nazaruk
TI  - On the Dichotomy of Linear Autonomous Systems of Functional-Differential Equations
JO  - Matematičeskie zametki
PY  - 2014
SP  - 129
EP  - 135
VL  - 95
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a10/
LA  - ru
ID  - MZM_2014_95_1_a10
ER  - 
%0 Journal Article
%A R. K. Romanovskii
%A E. M. Nazaruk
%T On the Dichotomy of Linear Autonomous Systems of Functional-Differential Equations
%J Matematičeskie zametki
%D 2014
%P 129-135
%V 95
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a10/
%G ru
%F MZM_2014_95_1_a10
R. K. Romanovskii; E. M. Nazaruk. On the Dichotomy of Linear Autonomous Systems of Functional-Differential Equations. Matematičeskie zametki, Tome 95 (2014) no. 1, pp. 129-135. http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a10/

[1] Kh. L. Massera, Kh. Kh. Sheffer, Lineinye differentsialnye uravneniya i funktsionalnye prostranstva, Mir, M., 1970 | MR | Zbl

[2] Yu. L. Daletskii, M. G. Krein, Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nelineinyi analiz i ego prilozheniya, Nauka, M., 1970 | MR | Zbl

[3] M. A. Krasnoselskii, V. Sh. Burd, Yu. S. Kolesov, Nelineinye pochti periodicheskie kolebaniya, Nauka, M., 1970 | MR | Zbl

[4] D. V. Anosov, Ya. G. Sinai, “Nekotorye gladkie ergodicheskie sistemy”, UMN, 22:5 (1967), 107–172 | MR | Zbl

[5] V. V. Zhikov, “Printsip usredneniya na vsei osi dlya parabolicheskikh uravnenii s peremennym glavnym chlenom”, Dokl. AN SSSR, 208:1 (1973), 32–35 | MR | Zbl

[6] V. V. Zhikov, “Nekotorye voprosy dopustimosti i dikhotomii. Printsip usredneniya”, Izv. AN SSSR. Ser. matem., 40:6 (1976), 1380–1408 | MR | Zbl

[7] B. M. Levitan, V. V. Zhikov, Pochti periodicheskie funktsii i differentsialnye uravneniya, Izd-vo Mosk. un-ta, M., 1978 | MR | Zbl

[8] E. M. Mukhamadiev, “Ob obratimosti differentsialnykh operatorov v prostranstve nepreryvnykh i ogranichennykh na osi funktsii”, Dokl. AN SSSR, 196:1 (1971), 47–49 | MR | Zbl

[9] R. K. Romanovskii, “Eksponentsialno rasscheplyaemye giperbolicheskie sistemy s dvumya nezavisimymi peremennymi”, Matem. sb., 133:3 (1987), 341–355 | MR | Zbl

[10] R. K. Romanovskii, “Usrednenie giperbolicheskikh uravnenii”, Dokl. AN SSSR, 306:2 (1989), 286–289 | MR

[11] C. Chicone, Yu. Latushkin, Evolutional Semigroups in Dynamical Systems and Differential Equations, Math. Surveys Monogr., 70, Amer. Math. Soc., Providense, RI, 1999 | MR | Zbl

[12] A. G. Baskakov, “Spektralnyi analiz differentsialnykh operatorov s neogranichennymi operatornymi koeffitsientami, raznostnye otnosheniya i polugruppy raznostnykh otnoshenii”, Izv. RAN. Ser. matem., 73:2 (2009), 3–68 | DOI | MR | Zbl

[13] A. G. Baskakov, Yu. N. Sintyaev, “Raznostnye operatory v issledovanii differentsialnykh operatorov: otsenki reshenii”, Differents. uravneniya, 46:2 (2010), 210–219 | MR | Zbl

[14] A. G. Baskakov, A. A. Vorobev, M. Yu. Romanova, “Giperbolicheskie polugruppy operatorov i uravnenie Lyapunova”, Matem. zametki, 89:2 (2011), 190–203 | DOI | MR | Zbl

[15] G. V. Demidenko, Yu. Yu. Klevtsova, “Ekcponentsialnaya dikhotomiya lineinykh sistem differentsialnykh uravnenii s periodicheskimi koeffitsientami”, Vestn. Novosib. gos. un-ta. Ser. Matem., mekh., inform., 8:4 (2008), 40–48 | Zbl

[16] R. K. Romanovskii, L. V. Belgart, “Ob eksponentsialnoi dikhotomii lineinykh raznostnykh sistem s pochti periodicheskoi matritsei”, Matem. zametki, 84:4 (2008), 638–640 | DOI | MR | Zbl

[17] R. K. Romanovskii, L. V. Belgart, “Ob eksponentsialnoi dikhotomii lineinykh sistem s pochti periodicheskoi matritsei”, Sib. matem. zhurn., 50:1 (2009), 190–198 | MR

[18] R. K. Romanovskii, L. V. Belgart, “Ob eksponentsialnoi dikhotomii reshenii zadachi Koshi dlya giperbolicheskoi sistemy na ploskosti”, Differents. uravneniya, 46:8 (2010), 1125–1134 | MR | Zbl

[19] Dzh. Kheil, Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR | Zbl