Spectral Analysis of Differential Operators with Unbounded Operator Coefficients in Weighted Spaces of Functions
Matematičeskie zametki, Tome 95 (2014) no. 1, pp. 18-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectral properties of operators constructed from a family of evolution operators are studied in Banach spaces of vector functions defined by a weight function of pre-exponential growth. Necessary and sufficient conditions for the invertibility of such operators are obtained in terms of exponential dichotomy. We prove a spectrum mapping theorem for semigroups of Howland difference operators generated by the operator under study.
Keywords: differential operator, weighted spaces of functions, spectral properties of operators, evolution operator, exponential dichotomy, Howland difference operator, Banach space, spectrum mapping theorem.
@article{MZM_2014_95_1_a1,
     author = {M. S. Bichegkuev},
     title = {Spectral {Analysis} of {Differential} {Operators} with {Unbounded} {Operator} {Coefficients} in {Weighted} {Spaces} of {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {18--25},
     publisher = {mathdoc},
     volume = {95},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a1/}
}
TY  - JOUR
AU  - M. S. Bichegkuev
TI  - Spectral Analysis of Differential Operators with Unbounded Operator Coefficients in Weighted Spaces of Functions
JO  - Matematičeskie zametki
PY  - 2014
SP  - 18
EP  - 25
VL  - 95
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a1/
LA  - ru
ID  - MZM_2014_95_1_a1
ER  - 
%0 Journal Article
%A M. S. Bichegkuev
%T Spectral Analysis of Differential Operators with Unbounded Operator Coefficients in Weighted Spaces of Functions
%J Matematičeskie zametki
%D 2014
%P 18-25
%V 95
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a1/
%G ru
%F MZM_2014_95_1_a1
M. S. Bichegkuev. Spectral Analysis of Differential Operators with Unbounded Operator Coefficients in Weighted Spaces of Functions. Matematičeskie zametki, Tome 95 (2014) no. 1, pp. 18-25. http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a1/

[1] A. G. Baskakov, “Polugruppy raznostnykh operatorov v spektralnom analize lineinykh differentsialnykh operatorov”, Funkts. analiz i ego pril., 30:3 (1996), 1–11 | DOI | MR | Zbl

[2] M. S. Bichegkuev, “O spektre raznostnykh i differentsialnykh operatorov v vesovykh prostranstvakh”, Funkts. analiz i ego pril., 44:1 (2010), 80–83 | DOI | MR | Zbl

[3] A. G. Baskakov, “O korrektnosti lineinykh differentsialnykh operatorov”, Matem. sb., 190:3 (1999), 3–28 | DOI | MR | Zbl

[4] A. G. Baskakov, “Teoriya predstavlenii banakhovykh algebr, abelevykh grupp i polugrupp v spektralnom analize lineinykh operatorov”, Funktsionalnyi analiz, SMFN, 9, MAI, M., 2004, 3–151 | MR | Zbl

[5] A. G. Baskakov, “Spektralnyi analiz differentsialnykh operatorov s neogranichennymi operatornymi koeffitsientami, raznostnye otnosheniya i polugruppy raznostnykh otnoshenii”, Izv. RAN. Ser. matem., 73:2 (2009), 3–68 | DOI | MR | Zbl

[6] M. S. Bichegkuev, “Lineinye raznostnye i differentsialnye operatory s neogranichennymi operatornymi koeffitsientami v vesovykh prostranstvakh”, Matem. zametki, 86:5 (2009), 673–680 | DOI | MR | Zbl

[7] M. S. Bichegkuev, “Ob usloviyakh razreshimosti raznostnykh uravnenii s nachalnym usloviem iz podprostranstva”, Sib. matem. zhurn., 51:4 (2010), 751–768 | MR | Zbl

[8] M. S. Bichegkuev, “Ob usloviyakh obratimosti raznostnykh i differentsialnykh operatorov v vesovykh prostranstvakh”, Izv. RAN. Ser. matem., 75:4 (2011), 3–20 | DOI | MR | Zbl

[9] A. G. Baskakov, “Lineinye differentsialnye operatory s neogranichennymi operatornymi koeffitsientami i polugruppy raznostnykh operatorov”, Matem. zametki, 59:6 (1996), 811–820 | DOI | MR | Zbl

[10] N. Van Minh, F. Räbiger, R. Schnaubelt, “Exponential stability, exponential expansiveness, and exponential dichotomy of evolution equation on the half-line”, Integral Equations Operator Theory, 32:3 (1998), 332–353 | DOI | MR | Zbl

[11] C. Chicone, Yu. Latushkin, Evolution Semigroups in Dynamical Systems and Differential Equations, Math. Surveys Monogr., 70, Amer. Math. Soc., Provindence, RI, 1999 | MR | Zbl

[12] D. Todorov, Generalisation of Analogs of Theorems of Maizel and Pliss and Their Application in Shadowing Theory, arXiv: math.DS/1202.4338v1

[13] A. G. Baskakov, “Issledovanie lineinykh differentsialnykh uravnenii metodami spektralnoi teorii raznostnykh operatorov i lineinykh otnoshenii”, UMN, 68:1 (2013), 77–128 | DOI | MR | Zbl

[14] M. S. Bichegkuev, “K spektralnomu analizu raznostnykh i differentsialnykh operatorov v vesovykh prostranstvakh”, Matem. sb., 204:11 (2013), 3–20 | DOI