Spectral Analysis of Differential Operators with Unbounded Operator Coefficients in Weighted Spaces of Functions
Matematičeskie zametki, Tome 95 (2014) no. 1, pp. 18-25
Voir la notice de l'article provenant de la source Math-Net.Ru
The spectral properties of operators constructed from a family of evolution operators are studied in Banach spaces of vector functions defined by a weight function of pre-exponential growth. Necessary and sufficient conditions for the invertibility of such operators are obtained in terms of exponential dichotomy. We prove a spectrum mapping theorem for semigroups of Howland difference operators generated by the operator under study.
Keywords:
differential operator, weighted spaces of functions, spectral properties of operators, evolution operator, exponential dichotomy, Howland difference operator, Banach space, spectrum mapping theorem.
@article{MZM_2014_95_1_a1,
author = {M. S. Bichegkuev},
title = {Spectral {Analysis} of {Differential} {Operators} with {Unbounded} {Operator} {Coefficients} in {Weighted} {Spaces} of {Functions}},
journal = {Matemati\v{c}eskie zametki},
pages = {18--25},
publisher = {mathdoc},
volume = {95},
number = {1},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a1/}
}
TY - JOUR AU - M. S. Bichegkuev TI - Spectral Analysis of Differential Operators with Unbounded Operator Coefficients in Weighted Spaces of Functions JO - Matematičeskie zametki PY - 2014 SP - 18 EP - 25 VL - 95 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a1/ LA - ru ID - MZM_2014_95_1_a1 ER -
M. S. Bichegkuev. Spectral Analysis of Differential Operators with Unbounded Operator Coefficients in Weighted Spaces of Functions. Matematičeskie zametki, Tome 95 (2014) no. 1, pp. 18-25. http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a1/