Best Polynomial Approximations and the Widths of Function Classes in~$L_{2}$
Matematičeskie zametki, Tome 94 (2013) no. 6, pp. 908-917.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sharp Jackson–Stechkin type inequalities in which the modulus of continuity of $m$th order of functions is defined via the Steklov function are obtained. For the classes of functions defined by these moduli of continuity, exact values of various $n$-widths are derived.
Keywords: best polynomial approximation, Jackson–Stechkin type inequality, function classes in $L_{2}$.
@article{MZM_2013_94_6_a9,
     author = {M. Sh. Shabozov and K. Tukhliev},
     title = {Best {Polynomial} {Approximations} and the {Widths} of {Function} {Classes} in~$L_{2}$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {908--917},
     publisher = {mathdoc},
     volume = {94},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a9/}
}
TY  - JOUR
AU  - M. Sh. Shabozov
AU  - K. Tukhliev
TI  - Best Polynomial Approximations and the Widths of Function Classes in~$L_{2}$
JO  - Matematičeskie zametki
PY  - 2013
SP  - 908
EP  - 917
VL  - 94
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a9/
LA  - ru
ID  - MZM_2013_94_6_a9
ER  - 
%0 Journal Article
%A M. Sh. Shabozov
%A K. Tukhliev
%T Best Polynomial Approximations and the Widths of Function Classes in~$L_{2}$
%J Matematičeskie zametki
%D 2013
%P 908-917
%V 94
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a9/
%G ru
%F MZM_2013_94_6_a9
M. Sh. Shabozov; K. Tukhliev. Best Polynomial Approximations and the Widths of Function Classes in~$L_{2}$. Matematičeskie zametki, Tome 94 (2013) no. 6, pp. 908-917. http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a9/

[1] N. I. Chernykh, “O nailuchshem priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami v $L_2$”, Matem. zametki, 2:5 (1967), 513–522 | MR | Zbl

[2] L. V. Taikov, “Neravenstva, soderzhaschie nailuchshie priblizheniya i modul nepreryvnosti funktsii iz $L_2$”, Matem. zametki, 20:3 (1976), 433–438 | MR | Zbl

[3] V. A. Yudin, “Diofantovy priblizheniya v ekstremalnykh zadachakh”, Dokl. AN SSSR, 251:1 (1980), 54–57 | MR

[4] A. G. Babenko, “O tochnoi konstante v neravenstve Dzheksona v $L^2$”, Matem. zametki, 39:5 (1986), 651–664 | MR | Zbl

[5] A. A. Ligun, “Tochnye neravenstva tipa Dzheksona dlya periodicheskikh funktsii v prostranstve $L_2$”, Matem. zametki, 43:6 (1988), 757–769 | MR | Zbl

[6] V. I. Ivanov, O. I. Smirnov, Konstanty Dzheksona i konstanty Yunga v prostranstvakh $L_{p}$, Izd-vo Tulsk. gos. un-ta, Tula, 1995

[7] A. G. Babenko, N. I. Chernykh, V. T. Shevaldin, “Neravenstvo Dzheksona–Stechkina v $L^2$ s trigonometricheskim modulem nepreryvnosti”, Matem. zametki, 65:6 (1999), 928–932 | DOI | MR | Zbl

[8] S. B. Vakarchuk, “$K$-funktsionaly i tochnye znacheniya $n$-poperechnikov nekotorykh klassov iz $L_2$”, Matem. zametki, 66:4 (1999), 494–499 | DOI | MR

[9] M. G. Esmaganbetov, “Poperechniki klassov iz $L_2[0,2\pi]$ i minimizatsiya tochnykh konstant v neravenstvakh tipa Dzheksona”, Matem. zametki, 65:6 (1999), 816–820 | DOI | MR | Zbl

[10] V. A. Abilov, F. V. Abilova, “Nekotorye voprosy priblizheniya $2\pi$-periodicheskikh funktsii summami Fure v prostranstve $L_2(2\pi)$”, Matem. zametki, 76:6 (2004), 803–811 | DOI | MR | Zbl

[11] S. B. Vakarchuk, “Tochnye konstanty v neravenstvakh tipa Dzheksona i tochnye znacheniya poperechnikov funktsionalnykh klassov iz $L_2$”, Matem. zametki, 78:5 (2005), 792–796 | DOI | MR | Zbl

[12] S. B. Vakarchuk, V. I. Zabutna, “Widths of function classes from $L_{2}$ and exact constants in Jackson type inequalities”, East J. Approx., 14:4 (2008), 411–421 | MR

[13] M. Sh. Shabozov, “Poperechniki nekotorykh klassov periodicheskikh differentsiruemykh funktsii v prostranstve $L_2[0,2\pi]$”, Matem. zametki, 87:4 (2010), 616–623 | DOI | MR | Zbl

[14] V. M. Tikhomirov, Nekotorye voprosy teorii priblizhenii, Izd-vo Mosk. un-ta, M., 1976 | MR

[15] A. Pinkus, “$n$-Widths in Approximation Theory”, Ergeb. Math. Grenzgeb. (3), 7, Springer-Verlag, Berlin, 1985 | MR

[16] S. B. Vakarchuk, V. I. Zabutnaya, “Tochnoe neravenstvo tipa Dzheksona–Stechkina v $L_2$ i poperechniki funktsionalnykh klassov”, Matem. zametki, 86:3 (2009), 328–336 | DOI | MR | Zbl