The Cauchy--Goursat Problem for Wave Equations with Nonlinear Dissipative Term
Matematičeskie zametki, Tome 94 (2013) no. 6, pp. 889-907.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cauchy–Goursat problem for wave equations with nonlinear dissipative term is studied. The existence, uniqueness, and blow-up of global solutions of this problem are considered. The local solvability of this problem is also discussed.
Keywords: wave equation, Volterra-type integral equation, Green's formula, dissipative term, blow-up of a solution.
Mots-clés : Cauchy–Goursat problem
@article{MZM_2013_94_6_a8,
     author = {S. S. Kharibegashvili and O. M. Dzhokhadze},
     title = {The {Cauchy--Goursat} {Problem} for {Wave} {Equations} with {Nonlinear} {Dissipative} {Term}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {889--907},
     publisher = {mathdoc},
     volume = {94},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a8/}
}
TY  - JOUR
AU  - S. S. Kharibegashvili
AU  - O. M. Dzhokhadze
TI  - The Cauchy--Goursat Problem for Wave Equations with Nonlinear Dissipative Term
JO  - Matematičeskie zametki
PY  - 2013
SP  - 889
EP  - 907
VL  - 94
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a8/
LA  - ru
ID  - MZM_2013_94_6_a8
ER  - 
%0 Journal Article
%A S. S. Kharibegashvili
%A O. M. Dzhokhadze
%T The Cauchy--Goursat Problem for Wave Equations with Nonlinear Dissipative Term
%J Matematičeskie zametki
%D 2013
%P 889-907
%V 94
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a8/
%G ru
%F MZM_2013_94_6_a8
S. S. Kharibegashvili; O. M. Dzhokhadze. The Cauchy--Goursat Problem for Wave Equations with Nonlinear Dissipative Term. Matematičeskie zametki, Tome 94 (2013) no. 6, pp. 889-907. http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a8/

[1] Zh.-L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR | Zbl

[2] J.-L. Lions, W. A. Strauss, “Some non linear evolution equations”, Bull. Soc. Math. France, 93 (1965), 43–96 | MR

[3] A. V. Bitsadze, Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981 | MR | Zbl

[4] F. John, “Blow-up of solutions of nonlinear wave equation in three space dimensions”, Manuscripta Math., 28:1-3 (1979), 235–268 | DOI | MR

[5] T. Kato, “Blow-up of solutions of some nonlinear hyperbolic equations”, Comm. Pure Appl. Math., 33:4 (1980), 501–505 | DOI | MR

[6] T. C. Sideris, “Nonexistence of global solutions to semilinear wave equations in high dimensions”, J. Differential Equations, 52:3 (1984), 378–406 | DOI | MR

[7] V. Georgiev, H. Lindblad, C. D. Sogge, “Weighted Strichartz estimates and global existence for semilinear wave equations”, Amer. J. Math., 119:6 (1997), 1291–1319 | DOI | MR

[8] L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations, Math. Appl. (Berlin), 26, Springer-Verlag, Berlin, 1997 | MR

[9] S. I. Pohozaev, L. Véron, “Blow-up results for nonlinear hyperbolic inequaties”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29:2 (2001), 393–420 | MR

[10] E. Mitidieri, S. I. Pokhozhaev, “Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Tr. MIAN, 234, Nauka, M., 2001, 3–383 | MR | Zbl

[11] G. Todorova, E. Vitillaro, “Blow-up for nonlinear dissipative wave equations in $\mathbb R^n$”, J. Math. Anal. Appl., 303:1 (2005), 242–257 | DOI | MR

[12] L. Liu, M. Wang, “Global existence and blow-up of solutions for some hyperbolic systems with damping and source terms”, Nonlinear Anal., 64:1 (2006), 69–91 | DOI | MR

[13] J. Zhu, “Blow-up of solutions of a semilinear hyperbolic equation and a parabolic equation with general forcing term and boundary condition”, Nonlinear Anal., 67:1 (2007), 33–38 | DOI | MR

[14] S. Kharibegashvili, “On the solvability of one multidimensional version of the first Darboux problem for some nonlinear wave equations”, Nonlinear Anal., 68:4 (2008), 912–924 | DOI | MR

[15] S. S. Kharibegashvili, “O razreshimosti kharakteristicheskoi zadachi Koshi dlya nekotorykh nelineinykh volnovykh uravnenii v svetovom konuse buduschego”, Differents. uravneniya, 44:1 (2008), 129–139 | MR

[16] O. Jokhadze, “On existence and nonexistence of global solutions of Cauchy–Goursat problem for nonlinear wave equations”, J. Math. Anal. Appl., 340:2 (2008), 1033–1045 | DOI | MR

[17] G. K. Berikelashvili, O. M. Dzhokhadze, B. G. Midodashvili, S. S. Kharibegashvili, “O suschestvovanii i otsutstvii globalnykh reshenii pervoi zadachi Darbu dlya nelineinykh volnovykh uravnenii”, Differents. uravneniya, 44:3 (2008), 359–372 | MR

[18] O. M. Dzhokhadze, S. S. Kharibegashvili, “O pervoi zadache Darbu dlya nelineinykh giperbolicheskikh uravnenii vtorogo poryadka”, Matem. zametki, 84:5 (2008), 693–712 | DOI | MR

[19] E. Gursa, Kurs matematicheskogo analiza. T. 3. Ch. 1. Beskonechno blizkie integraly. Uravneniya s chastnymi proizvodnymi, Gostekhizdat, M.-L., 1933 | MR

[20] E. I. Moiseev, “O priblizhenii klassicheskogo resheniya zadachi Darbu gladkimi resheniyami”, Differents. uravneniya, 20:1 (1984), 73–87 | MR

[21] E. I. Moiseev, Uravneniya smeshannogo tipa so spektralnym parametrom, Izd-vo Mosk. un-ta, M., 1988 | MR

[22] A. M. Nakhushev, Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995

[23] S. Kharibegashvili, “Goursat and Darboux type problems for linear hyperbolic partial differential equations and systems”, Mem. Differential Equations Math. Phys., 4 (1995), 1–127 | MR

[24] D. Khenri, Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR

[25] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR | Zbl

[26] V. A. Trenogin, Funktsionalnyi analiz, Nauka, M., 1980 | MR