On the Coefficients of Fourier Series with Respect to Trigonometric Systems in the Space $L_{2,r}$
Matematičeskie zametki, Tome 94 (2013) no. 6, pp. 884-888
Cet article a éte moissonné depuis la source Math-Net.Ru
A Hardy–Littlewood type theorem for trigonometric series in the space $L_{2,r}$, strengthening Bochkarev's theorem, is obtained.
Keywords:
Fourier series, Hardy–Littlewood type theorem, trigonometric series, the space $L_{2,r}$.
@article{MZM_2013_94_6_a7,
author = {N. T. Tleukhanova and G. K. Musabaeva},
title = {On the {Coefficients} of {Fourier} {Series} with {Respect} to {Trigonometric} {Systems} in the {Space~}$L_{2,r}$},
journal = {Matemati\v{c}eskie zametki},
pages = {884--888},
year = {2013},
volume = {94},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a7/}
}
TY - JOUR
AU - N. T. Tleukhanova
AU - G. K. Musabaeva
TI - On the Coefficients of Fourier Series with Respect to Trigonometric Systems in the Space $L_{2,r}$
JO - Matematičeskie zametki
PY - 2013
SP - 884
EP - 888
VL - 94
IS - 6
UR - http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a7/
LA - ru
ID - MZM_2013_94_6_a7
ER -
N. T. Tleukhanova; G. K. Musabaeva. On the Coefficients of Fourier Series with Respect to Trigonometric Systems in the Space $L_{2,r}$. Matematičeskie zametki, Tome 94 (2013) no. 6, pp. 884-888. http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a7/
[1] C. V. Bochkarev, “Teorema Khausdorfa–Yunga–Rissa v prostranstvakh Lorentsa i multiplikativnye neravenstva”, Teoriya priblizhenii. Garmonicheskii analiz, Tr. MIAN, 219, Nauka, M., 1997, 103–114 | MR | Zbl
[2] E. M. Stein, “Interpolation of linear operators”, Trans. Amer. Math. Soc., 83 (1956), 482–492 | DOI | MR