On the Coefficients of Fourier Series with Respect to Trigonometric Systems in the Space~$L_{2,r}$
Matematičeskie zametki, Tome 94 (2013) no. 6, pp. 884-888.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Hardy–Littlewood type theorem for trigonometric series in the space $L_{2,r}$, strengthening Bochkarev's theorem, is obtained.
Keywords: Fourier series, Hardy–Littlewood type theorem, trigonometric series, the space $L_{2,r}$.
@article{MZM_2013_94_6_a7,
     author = {N. T. Tleukhanova and G. K. Musabaeva},
     title = {On the {Coefficients} of {Fourier} {Series} with {Respect} to {Trigonometric} {Systems} in the {Space~}$L_{2,r}$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {884--888},
     publisher = {mathdoc},
     volume = {94},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a7/}
}
TY  - JOUR
AU  - N. T. Tleukhanova
AU  - G. K. Musabaeva
TI  - On the Coefficients of Fourier Series with Respect to Trigonometric Systems in the Space~$L_{2,r}$
JO  - Matematičeskie zametki
PY  - 2013
SP  - 884
EP  - 888
VL  - 94
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a7/
LA  - ru
ID  - MZM_2013_94_6_a7
ER  - 
%0 Journal Article
%A N. T. Tleukhanova
%A G. K. Musabaeva
%T On the Coefficients of Fourier Series with Respect to Trigonometric Systems in the Space~$L_{2,r}$
%J Matematičeskie zametki
%D 2013
%P 884-888
%V 94
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a7/
%G ru
%F MZM_2013_94_6_a7
N. T. Tleukhanova; G. K. Musabaeva. On the Coefficients of Fourier Series with Respect to Trigonometric Systems in the Space~$L_{2,r}$. Matematičeskie zametki, Tome 94 (2013) no. 6, pp. 884-888. http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a7/

[1] C. V. Bochkarev, “Teorema Khausdorfa–Yunga–Rissa v prostranstvakh Lorentsa i multiplikativnye neravenstva”, Teoriya priblizhenii. Garmonicheskii analiz, Tr. MIAN, 219, Nauka, M., 1997, 103–114 | MR | Zbl

[2] E. M. Stein, “Interpolation of linear operators”, Trans. Amer. Math. Soc., 83 (1956), 482–492 | DOI | MR