Periodic Two-Phase ``Rogue Waves''
Matematičeskie zametki, Tome 94 (2013) no. 6, pp. 871-883.

Voir la notice de l'article provenant de la source Math-Net.Ru

A family of periodic (in $x$ and $z$) two-gap solutions of the focusing nonlinear Schrödinger equation is constructed. A condition under which the two-gap solutions exhibit the behavior of periodic “rogue waves” is obtained.
Keywords: focusing nonlinear Schrödinger equation, “rogue wave,” periodic two-gap solution, multiphase solution, finite-gap integration, cycle basis, amplitude peak.
@article{MZM_2013_94_6_a6,
     author = {A. O. Smirnov},
     title = {Periodic {Two-Phase} {``Rogue} {Waves''}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {871--883},
     publisher = {mathdoc},
     volume = {94},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a6/}
}
TY  - JOUR
AU  - A. O. Smirnov
TI  - Periodic Two-Phase ``Rogue Waves''
JO  - Matematičeskie zametki
PY  - 2013
SP  - 871
EP  - 883
VL  - 94
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a6/
LA  - ru
ID  - MZM_2013_94_6_a6
ER  - 
%0 Journal Article
%A A. O. Smirnov
%T Periodic Two-Phase ``Rogue Waves''
%J Matematičeskie zametki
%D 2013
%P 871-883
%V 94
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a6/
%G ru
%F MZM_2013_94_6_a6
A. O. Smirnov. Periodic Two-Phase ``Rogue Waves''. Matematičeskie zametki, Tome 94 (2013) no. 6, pp. 871-883. http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a6/

[1] V. Ruban, Y. Kodama, M. Ruderman, J. Dudley, R. Grimshaw, P. V. E. McClintock, M. Onorato, C. Kharif, E. Pelinovsky, T. Soomere, G. Lindgren, N. Akhmediev, A. Slunyaev, D. Solli, C. Ropers, B. Jalali, F. Dias, A. Osborne, “Rogue Waves – towards a Unifying Concept?: Discussions Debates”, Eur. Phys. J. Special Topics, 185:1 (2010), 5–15 | DOI

[2] N. Akhmediev, A. Ankiewicz, M. Taki, “Waves that appear from nowhere and disappear without a trace”, Phys. Lett. A, 373:6 (2009), 675–678 | DOI

[3] A. Ankiewicz, D. J. Kedzora, N. Akhmediev, “Rogue waves triplets”, Phys. Lett. A, 375:28-29 (2011), 2782–2785 | DOI

[4] D. J. Kedziora, A. Ankiewicz, N. Akhmediev, “Circular rogue wave clusters”, Phys. Rev. A, 84:5 (2011), 056611

[5] P. Dubard, P. Gaillard, C. Klein, V. B. Matveev, “On multi-rogue waves solutions of the focusing NLS equation and positon solutions of the KdV equation”, Eur. Phys. J. Spec. Top., 185:1 (2010), 247–261 | DOI

[6] P. Dubard, V. B. Matveev, “Multi-rogue waves solutions to the focusing NLS equation and the KP-I equation”, Nat. Hazards Earth Syst. Sci., 11 (2011), 667–672 | DOI

[7] B. Guo, L. Ling, Q. P. Liu, “Nonlinear Schrödinger equation: Generalized Darboux transformation and rogue wave solutions”, Phys. Rev. E, 85:2 (2012), 026607

[8] Y. Ohta, J. Yang, “General higher order rogue waves and their dynamics in the nonlinear Schrödinger equation”, Proc. R. Soc. A, 468:2142 (2012), 1716–1740 | DOI | MR

[9] A. I. Dyachenko, V. E. Zakharov, “On the formation of freak waves on the surface of deep water”, Pisma v ZhETF, 88:5 (2008), 356–359

[10] V. E. Zakharov, R. V. Shamin, “O veroyatnosti vozniknoveniya voln-ubiits”, Pisma v ZhETF, 91:2 (2010), 68–71

[11] N. N. Akhmediev, A. Ankevich, Solitony, Fizmatlit, M., 2003

[12] K. B. Dysthe, “Note on a modification to the nonliear Shrödinger equation for application to deep water waves”, Proc. R. Soc. Lond. A, 369:1736 (1979), 105–114 | DOI

[13] K. Trulsen, K. B. Dysthe, “A modified nonlinear Shrödinger equation for broader bandwidth gravity waves on deep water”, Wave Motion, 24:3 (1996), 281–289 | DOI | MR

[14] K. Trulsen, I. Kliakhandler, K. B. Dysthe, M. G. Velarde, “On weakly nonlinear modulation of waves on deep water”, Phys. Fluids, 12:10 (2000), 2432–2437 | DOI | MR

[15] A. Saini, V. M. Vyas, S. N. Pandey, T. S. Raju, P. K. Panigrahi, Travelling Wave Solutions to Nonlinear Schrodinger Equation With Self-Steepening and Self-Frequency Shift, 2009, arXiv: nlin.PS/0911.2788

[16] S. P. Novikov, “Periodicheskaya zadacha dlya uravneniya Kortevega–de Friza. I”, Funkts. analiz i ego pril., 8:3 (1974), 54–66 | MR | Zbl

[17] P. D. Lax, “Periodic solutions of the KdV equations”, Nonlinear Wave Motion, Lectures in Appl. Math., 15, Amer. Math. Soc., Providence, RI, 1974, 85–96 | MR

[18] B. A. Dubrovin, S. P. Novikov, “Periodicheskaya zadacha dlya uravnenii Kortevega–de Friza i Shturma–Liuvillya. Ikh svyaz s algebraicheskoi geometriei”, Dokl. AN SSSR, 219:3 (1974), 19–22 | MR

[19] A. R. Its, V. B. Matveev, “Operatory Shredingera s konechnozonnym spektrom i $N$-solitonnye resheniya uravneniya Kortevega–de Frisa”, TMF, 23:1 (1975), 51–68 | MR

[20] B. A. Dubrovin, V. B. Matveev, S. P. Novikov, “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1 (1976), 55–136 | MR | Zbl

[21] I. M. Krichever, “Metody algebraicheskoi geometrii v teorii nelineinykh uravnenii”, UMN, 32:6 (1977), 183–208 | MR | Zbl

[22] B. A. Dubrovin, “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2 (1981), 11–80 | MR | Zbl

[23] V. B. Matveev, “30 years of finite-gap integration theory”, Phil. Trans. R. Soc. A, 366:1867 (2008), 837–875 | DOI

[24] E. D. Belokolos, A. I. Bobenko, V. Z. Enol'skii, A. R. Its, V. B. Matveev, Algebro-Geometrical Approach to Nonlinear Evolution Equations, Springer Ser. Nonlinear Dynam., Springer-Verlag, Berlin, 1994

[25] A. O. Smirnov, “Matrichnyi analog teoremy Appelya i reduktsii mnogomernykh teta–funktsii Rimana”, Matem. sb., 133:3 (1987), 382–391 | MR | Zbl

[26] A. R. Its, “Obraschenie giperellipticheskikh integralov i integrirovanie nelineinykh differentsialnykh uravnenii”, Vestn. LGU. Ser. Matem., mekh., astron., 7:2 (1976), 39–46

[27] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Uravnenie Shredingera v periodicheskom pole i rimanovy poverkhnosti”, Dokl. AN SSSR, 229:1 (1976), 15–18 | MR | Zbl

[28] J. D. Fay, Theta Functions on Riemann Surfaces, Lecture Notes in Math., 352, Springer-Verlag, Berlin, 1973 | DOI | MR

[29] H. F. Baker, Abel's Theorem and the Allied Theory Including the Theory of the Theta Functions, Cambridge Univ. Press, Cambridge, 1897 | Zbl

[30] A. Krazer, Lehrbuch der Thetafunktionen, B. G. Teubner, Leipzig, 1903 | Zbl

[31] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR

[32] A. O. Smirnov, “Dvukhzonnye ellipticheskie resheniya integriruemykh nelineinykh uravnenii”, Matem. zametki, 58:1 (1995), 86–97 | MR | Zbl

[33] E. G. Amosenok, A. O. Smirnov, “Two-gap 2-elliptic solution of Boussinesq equation”, Lett. Math. Phys., 96:1-3 (2011), 157–168 | DOI | MR

[34] A. O. Smirnov, G. M. Golovachev, E. G. Amosenok, “Dvukhzonnye 3-ellipticheskie resheniya uravnenii Bussineska i Kortevega–de Friza”, Nelineinaya dinam., 7:2 (2011), 239–256