On the Simple Isotopy Class of a Source–Sink Diffeomorphism on the $3$-Sphere
Matematičeskie zametki, Tome 94 (2013) no. 6, pp. 828-845 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The results obtained in this paper are related to the Palis–Pugh problem on the existence of an arc with finitely or countably many bifurcations which joins two Morse–Smale systems on a closed smooth manifold $M^n$. Newhouse and Peixoto showed that such an arc joining flows exists for any $n$ and, moreover, it is simple. However, there exist isotopic diffeomorphisms which cannot be joined by a simple arc. For $n=1$, this is related to the presence of the Poincaré rotation number, and for $n=2$, to the possible existence of periodic points of different periods and heteroclinic orbits. In this paper, for the dimension $n=3$, a new obstruction to the existence of a simple arc is revealed, which is related to the wild embedding of all separatrices of saddle points. Necessary and sufficient conditions for a Morse–Smale diffeomorphism on the $3$-sphere without heteroclinic intersections to be joined by a simple arc with a “source-sink” diffeomorphism are also found.
Keywords: isotopic diffeomorphisms, Morse–Smale diffeomorphism, source-sink diffeomorphism, wildly embedded separatrices
Mots-clés : simple arc.
@article{MZM_2013_94_6_a3,
     author = {V. Z. Grines and O. V. Pochinka},
     title = {On the {Simple} {Isotopy} {Class} of a {Source{\textendash}Sink} {Diffeomorphism} on the $3${-Sphere}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {828--845},
     year = {2013},
     volume = {94},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a3/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - O. V. Pochinka
TI  - On the Simple Isotopy Class of a Source–Sink Diffeomorphism on the $3$-Sphere
JO  - Matematičeskie zametki
PY  - 2013
SP  - 828
EP  - 845
VL  - 94
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a3/
LA  - ru
ID  - MZM_2013_94_6_a3
ER  - 
%0 Journal Article
%A V. Z. Grines
%A O. V. Pochinka
%T On the Simple Isotopy Class of a Source–Sink Diffeomorphism on the $3$-Sphere
%J Matematičeskie zametki
%D 2013
%P 828-845
%V 94
%N 6
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a3/
%G ru
%F MZM_2013_94_6_a3
V. Z. Grines; O. V. Pochinka. On the Simple Isotopy Class of a Source–Sink Diffeomorphism on the $3$-Sphere. Matematičeskie zametki, Tome 94 (2013) no. 6, pp. 828-845. http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a3/

[1] J. Palis, C. C. Pugh, “Fifty problems in dynamical systems”, Dynamical Systems – Warwick 1974, Lecture Notes in Math., 468, Springer-Verlag, Berlin, 1975, 345–353 | DOI | MR

[2] S. Newhouse, M. M. Peixoto, “There is a simple arc joining any two Morse–Smale flows”, Trois études en dynamique qualitative, Asterisque, 31, Soc. Math. France, Paris, 1976, 15–41 | MR

[3] S. Matsumoto, “There are two isotopic Morse–Smale diffeomorphism which can not be joined by simple arcs”, Invent. Math., 51:1 (1979), 1–7 | DOI | MR

[4] P. R. Blanchard, “Invariants of the NPT isotopy classes of Morse–Smale diffeomorphisms of surfaces”, Duke Math. J., 47:1 (1980), 33–46 | DOI | MR

[5] D. Pixton, “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172 | DOI | MR

[6] V. Z. Grines, O. V. Pochinka, Vvedenie v topologicheskuyu klassifikatsiyu kaskadov na mnogoobraziyakh razmernosti dva i tri, RKhD, Izhevsk, 2011

[7] Kh. Bonatti, V. Z. Grines, V. S. Medvedev, O. V. Pochinka, “Bifurkatsii diffeomorfizmov Morsa–Smeila s diko vlozhennymi separatrisami”, Dinamicheskie sistemy i optimizatsiya, Sbornik statei. K 70-letiyu so dnya rozhdeniya akademika Dmitriya Viktorovicha Anosova, Tr. MIAN, 256, Nauka, M., 2007, 54–69 | MR | Zbl

[8] C. Bonatti, V. Z. Grines, “Knots as topological invariant for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dynam. Control Systems, 6:4 (2000), 579–602 | DOI | MR

[9] J. Palis, “Arcs of dynamical systems: bifurcations and stability”, Dynamical Systems – Warwick 1974, Lecture Notes in Math., 468, Springer-Verlag, Berlin, 1975, 48–53 | DOI

[10] M. W. Hirsch, C. C. Pugh, M. Shub, “Invariant Manifolds”, Lecture Notes in Math., 583, Springer-Verlag, Berlin, 1977 | DOI | MR

[11] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii. Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982 | MR

[12] V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, O. V. Pochinka, “Globalnye attraktor i repeller diffeomorfizmov Morsa–Smeila”, Differentsialnye uravneniya i topologiya. II, Sbornik statei. K 100-letiyu so dnya rozhdeniya akademika Lva Semenovicha Pontryagina, Tr. MIAN, 271, MAIK, M., 2010, 111–133 | MR

[13] A. Hatcher, Notes on Basic 3-Manifold Topology, http://www.math.cornell.edu/~hatcher/3M/3M.pdf

[14] W. D. Neumann, Notes on Geometry and 3-Manifolds, http://www.math.columbia.edu/~neumann/preprints/budfinal.pdf

[15] A. T. Fomenko, Differentsialnaya geometriya i topologiya. Dopolnitelnye glavy, RKhD, Izhevsk, 1999

[16] O. V. Pochinka, A. A. Romanov, “Bifurkatsiya udvoeniya perioda na prostoi duge, soedinyayuschei diffeomorfizmy Pikstona”, Zhurnal SVMO, 14:3 (2012), 74–79

[17] M. Khirsh, Differentsialnaya topologiya, Mir, M., 1979 | MR

[18] F. Waldhausen, “On irreducible 3-manifolds which are sufficiently large”, Ann. of Math. (2), 87:1 (1968), 56–88 | DOI | MR

[19] V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, “Novye sootnosheniya dlya sistem Morsa–Smeila s trivialno vlozhennymi odnomernymi separatrisami”, Matem. sb., 194:7 (2003), 25–56 | DOI | MR | Zbl

[20] C. Bonatti, V. Grines, V. Medvedev, E. Pécou, “Topological classification of gradient-like diffeomorphisms on $3$-manifolds”, Topology, 43:2 (2004), 369–391 | DOI | MR