Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2013_94_6_a3, author = {V. Z. Grines and O. V. Pochinka}, title = {On the {Simple} {Isotopy} {Class} of a {Source--Sink} {Diffeomorphism} on the $3${-Sphere}}, journal = {Matemati\v{c}eskie zametki}, pages = {828--845}, publisher = {mathdoc}, volume = {94}, number = {6}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a3/} }
TY - JOUR AU - V. Z. Grines AU - O. V. Pochinka TI - On the Simple Isotopy Class of a Source--Sink Diffeomorphism on the $3$-Sphere JO - Matematičeskie zametki PY - 2013 SP - 828 EP - 845 VL - 94 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a3/ LA - ru ID - MZM_2013_94_6_a3 ER -
V. Z. Grines; O. V. Pochinka. On the Simple Isotopy Class of a Source--Sink Diffeomorphism on the $3$-Sphere. Matematičeskie zametki, Tome 94 (2013) no. 6, pp. 828-845. http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a3/
[1] J. Palis, C. C. Pugh, “Fifty problems in dynamical systems”, Dynamical Systems – Warwick 1974, Lecture Notes in Math., 468, Springer-Verlag, Berlin, 1975, 345–353 | DOI | MR
[2] S. Newhouse, M. M. Peixoto, “There is a simple arc joining any two Morse–Smale flows”, Trois études en dynamique qualitative, Asterisque, 31, Soc. Math. France, Paris, 1976, 15–41 | MR
[3] S. Matsumoto, “There are two isotopic Morse–Smale diffeomorphism which can not be joined by simple arcs”, Invent. Math., 51:1 (1979), 1–7 | DOI | MR
[4] P. R. Blanchard, “Invariants of the NPT isotopy classes of Morse–Smale diffeomorphisms of surfaces”, Duke Math. J., 47:1 (1980), 33–46 | DOI | MR
[5] D. Pixton, “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172 | DOI | MR
[6] V. Z. Grines, O. V. Pochinka, Vvedenie v topologicheskuyu klassifikatsiyu kaskadov na mnogoobraziyakh razmernosti dva i tri, RKhD, Izhevsk, 2011
[7] Kh. Bonatti, V. Z. Grines, V. S. Medvedev, O. V. Pochinka, “Bifurkatsii diffeomorfizmov Morsa–Smeila s diko vlozhennymi separatrisami”, Dinamicheskie sistemy i optimizatsiya, Sbornik statei. K 70-letiyu so dnya rozhdeniya akademika Dmitriya Viktorovicha Anosova, Tr. MIAN, 256, Nauka, M., 2007, 54–69 | MR | Zbl
[8] C. Bonatti, V. Z. Grines, “Knots as topological invariant for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dynam. Control Systems, 6:4 (2000), 579–602 | DOI | MR
[9] J. Palis, “Arcs of dynamical systems: bifurcations and stability”, Dynamical Systems – Warwick 1974, Lecture Notes in Math., 468, Springer-Verlag, Berlin, 1975, 48–53 | DOI
[10] M. W. Hirsch, C. C. Pugh, M. Shub, “Invariant Manifolds”, Lecture Notes in Math., 583, Springer-Verlag, Berlin, 1977 | DOI | MR
[11] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii. Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982 | MR
[12] V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, O. V. Pochinka, “Globalnye attraktor i repeller diffeomorfizmov Morsa–Smeila”, Differentsialnye uravneniya i topologiya. II, Sbornik statei. K 100-letiyu so dnya rozhdeniya akademika Lva Semenovicha Pontryagina, Tr. MIAN, 271, MAIK, M., 2010, 111–133 | MR
[13] A. Hatcher, Notes on Basic 3-Manifold Topology, http://www.math.cornell.edu/~hatcher/3M/3M.pdf
[14] W. D. Neumann, Notes on Geometry and 3-Manifolds, http://www.math.columbia.edu/~neumann/preprints/budfinal.pdf
[15] A. T. Fomenko, Differentsialnaya geometriya i topologiya. Dopolnitelnye glavy, RKhD, Izhevsk, 1999
[16] O. V. Pochinka, A. A. Romanov, “Bifurkatsiya udvoeniya perioda na prostoi duge, soedinyayuschei diffeomorfizmy Pikstona”, Zhurnal SVMO, 14:3 (2012), 74–79
[17] M. Khirsh, Differentsialnaya topologiya, Mir, M., 1979 | MR
[18] F. Waldhausen, “On irreducible 3-manifolds which are sufficiently large”, Ann. of Math. (2), 87:1 (1968), 56–88 | DOI | MR
[19] V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, “Novye sootnosheniya dlya sistem Morsa–Smeila s trivialno vlozhennymi odnomernymi separatrisami”, Matem. sb., 194:7 (2003), 25–56 | DOI | MR | Zbl
[20] C. Bonatti, V. Grines, V. Medvedev, E. Pécou, “Topological classification of gradient-like diffeomorphisms on $3$-manifolds”, Topology, 43:2 (2004), 369–391 | DOI | MR