On Entropy-Type Functionals Arising in Stochastic Chemical Kinetics Related to the Concentration of the Invariant Measure and Playing the Role of Lyapunov Functions in the Dynamics of Quasiaverages
Matematičeskie zametki, Tome 94 (2013) no. 6, pp. 819-827.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies the relationship between the Lyapunov function of a macrosystem whose dynamics is governed by the laws of stochastic chemical kinetics and the invariant measure of this macrosystem arising at large times. A necessary and sufficient condition for the reduction of the search problem for the equilibrium of the macrosystem (the most probable macrostate of the invariant measure of this macrosystem) to an entropy-linear programming problem is given.
Keywords: entropy-type functional, stochastic chemical kinetics, Lyapunov function, dynamics of quasiaverages, equilibrium search problem, invariant measure, predator-prey model
Mots-clés : Lotka–Volterra system.
@article{MZM_2013_94_6_a2,
     author = {A. V. Gasnikov and E. V. Gasnikova},
     title = {On {Entropy-Type} {Functionals} {Arising} in {Stochastic} {Chemical} {Kinetics} {Related} to the {Concentration} of the {Invariant} {Measure} and {Playing} the {Role} of {Lyapunov} {Functions} in the {Dynamics} of {Quasiaverages}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {819--827},
     publisher = {mathdoc},
     volume = {94},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a2/}
}
TY  - JOUR
AU  - A. V. Gasnikov
AU  - E. V. Gasnikova
TI  - On Entropy-Type Functionals Arising in Stochastic Chemical Kinetics Related to the Concentration of the Invariant Measure and Playing the Role of Lyapunov Functions in the Dynamics of Quasiaverages
JO  - Matematičeskie zametki
PY  - 2013
SP  - 819
EP  - 827
VL  - 94
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a2/
LA  - ru
ID  - MZM_2013_94_6_a2
ER  - 
%0 Journal Article
%A A. V. Gasnikov
%A E. V. Gasnikova
%T On Entropy-Type Functionals Arising in Stochastic Chemical Kinetics Related to the Concentration of the Invariant Measure and Playing the Role of Lyapunov Functions in the Dynamics of Quasiaverages
%J Matematičeskie zametki
%D 2013
%P 819-827
%V 94
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a2/
%G ru
%F MZM_2013_94_6_a2
A. V. Gasnikov; E. V. Gasnikova. On Entropy-Type Functionals Arising in Stochastic Chemical Kinetics Related to the Concentration of the Invariant Measure and Playing the Role of Lyapunov Functions in the Dynamics of Quasiaverages. Matematičeskie zametki, Tome 94 (2013) no. 6, pp. 819-827. http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a2/

[1] V. A. Malyshev, S. A. Pirogov, A. N. Rybko, “Random walks and chemical networks”, Mosc. Math. J., 4:2 (2004), 441–453 | MR | Zbl

[2] V. A. Malyshev, S. A. Pirogov, “Obratimost i neobratimost v stokhasticheskoi khimicheskoi kinetike”, UMN, 63:1(379) (2008), 3–36 | DOI | MR | Zbl

[3] I. V. Berezin, A. A. Klesov, Pervichnyi kurs khimicheskoi i fermentativnoi kinetiki, Izd-vo Mosk. un-ta, M., 1978

[4] V. V. Vedenyapin, Kineticheskaya uravneniya Boltsmana i Vlasova, Fizmatlit, M., 2001

[5] Ya. G. Batischeva, V. V. Vedenyapin, “II-i zakon termodinamiki dlya khimicheskoi kinetiki”, Matem. modelirovanie, 17:8 (2005), 106–110 | MR | Zbl

[6] A. A. Borovkov, Ergodichnost i ustoichivost sluchainykh protsessov, URSS, M., 1999 | MR

[7] M. Kats, Veroyatnost i smezhnye voprosy v fizike, Mir, M., 1965

[8] K. V. Gardiner, Stokhasticheskie metody v estestvennykh naukakh, Mir, M., 1986 | MR

[9] V.-B. Zang, Sinergeticheskaya ekonomika: vremya i peremeny v nelineinoi ekonomicheskoi teorii, Mir, M., 1999

[10] V. Vaidlikh, Sotsiodinamika: sistemnyi podkhod k matematicheskomu modelirovaniyu v sotsialnykh naukakh, URSS, M., 2010

[11] A. V. Gasnikov, E. V. Gasnikova, O. S. Fedko, “O vozmozhnoi dinamike v modeli ranzhirovaniya web-stranits PageRank i modernizirovannoi modeli rascheta matritsy korrespondentsii”, Tr. MFTI, 4:2 (2012), 101–120

[12] A. V. Gasnikov, S. L. Klenov, E. A. Nurminskii, Ya. A. Kholodov, N. B. Shamrai, Vvedenie v matematicheskoe modelirovanie transportnykh potokov, MTsNMO, M., 2013

[13] S. N. Ethier, T. G. Kurtz, Markov Processes. Characterization and Convergence, Wiley Ser. Probab. Math. Statist. Probab. Math. Statist., John Wiley Sons, New York, 1986 | MR

[14] A. V. Kalinkin, “Markovskie vetvyaschiesya protsessy s vzaimodeistviem”, UMN, 57:2 (2002), 23–84 | DOI | MR | Zbl

[15] A. O. Gelfond, Ischislenie konechnykh raznostei, URSS, M., 2012 | MR

[16] M. V. Fedoryuk, Metod perevala, Nauka, M., 1977 | MR

[17] E. V. Gasnikova, Modelirovanie dinamiki makrosistem na osnove kontseptsii ravnovesiya, Dis. $\dots$ kand. fiz.-matem. nauk, 2012

[18] F. Chung, “Laplacians and the Cheeger inequality for directed graphs”, Ann. Comb., 9:1 (2005), 1–19 | MR

[19] K. Yu. Bogdanov, “Khischnik i zhertva”, Kvant, 1993, no. 3/4, 13–19

[20] V. N. Razzhevaikin, Analiz modelei dinamiki populyatsii, MFTI, M., 2010

[21] A. A. Vasin, P. S. Krasnoschekov, V. V. Morozov, Issledovanie operatsii, Universitetskii uchebnik, Akademiya, M., 2008