Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2013_94_6_a11, author = {I. A. Akolzin}, title = {On the {Erd\H{o}s--Hajnal} {Problem} for $3${-Uniform} {Hypergraphs}}, journal = {Matemati\v{c}eskie zametki}, pages = {933--935}, publisher = {mathdoc}, volume = {94}, number = {6}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a11/} }
I. A. Akolzin. On the Erd\H{o}s--Hajnal Problem for $3$-Uniform Hypergraphs. Matematičeskie zametki, Tome 94 (2013) no. 6, pp. 933-935. http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a11/
[1] P. Erdős, A. Hajnal, Acta Math. Acad. Sci. Hungar, 12 (1961), 87–123 | MR | Zbl
[2] A. M. Raigorodskii, D. A. Shabanov, UMN, 66:5(401) (2011), 109–182 | DOI | MR | Zbl
[3] B. Toft, Infinite and Finite Sets, Vol. III, Colloq. Math. Soc. Janos Bolyai, 10, North-Holland Publ., Amsterdam, 1975, 1445–1457 | MR | Zbl
[4] M. K. Goldberg, H. C. Russell, Ars Combin., 39 (1995), 139–148 | MR | Zbl
[5] P. R. J. Östergård, “On the minimum size of 4-uniform hypergraphs without property $B$”, Discrete Appl. Math. (to appear) | DOI
[6] A. Sidorenko, Graphs Combin., 11:2 (1995), 179–199 | DOI | MR | Zbl