On the Erd\H{o}s--Hajnal Problem for $3$-Uniform Hypergraphs
Matematičeskie zametki, Tome 94 (2013) no. 6, pp. 933-935.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: hypergraph, coloring, $n$-uniform hypergraph.
@article{MZM_2013_94_6_a11,
     author = {I. A. Akolzin},
     title = {On the {Erd\H{o}s--Hajnal} {Problem} for $3${-Uniform} {Hypergraphs}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {933--935},
     publisher = {mathdoc},
     volume = {94},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a11/}
}
TY  - JOUR
AU  - I. A. Akolzin
TI  - On the Erd\H{o}s--Hajnal Problem for $3$-Uniform Hypergraphs
JO  - Matematičeskie zametki
PY  - 2013
SP  - 933
EP  - 935
VL  - 94
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a11/
LA  - ru
ID  - MZM_2013_94_6_a11
ER  - 
%0 Journal Article
%A I. A. Akolzin
%T On the Erd\H{o}s--Hajnal Problem for $3$-Uniform Hypergraphs
%J Matematičeskie zametki
%D 2013
%P 933-935
%V 94
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a11/
%G ru
%F MZM_2013_94_6_a11
I. A. Akolzin. On the Erd\H{o}s--Hajnal Problem for $3$-Uniform Hypergraphs. Matematičeskie zametki, Tome 94 (2013) no. 6, pp. 933-935. http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a11/

[1] P. Erdős, A. Hajnal, Acta Math. Acad. Sci. Hungar, 12 (1961), 87–123 | MR | Zbl

[2] A. M. Raigorodskii, D. A. Shabanov, UMN, 66:5(401) (2011), 109–182 | DOI | MR | Zbl

[3] B. Toft, Infinite and Finite Sets, Vol. III, Colloq. Math. Soc. Janos Bolyai, 10, North-Holland Publ., Amsterdam, 1975, 1445–1457 | MR | Zbl

[4] M. K. Goldberg, H. C. Russell, Ars Combin., 39 (1995), 139–148 | MR | Zbl

[5] P. R. J. Östergård, “On the minimum size of 4-uniform hypergraphs without property $B$”, Discrete Appl. Math. (to appear) | DOI

[6] A. Sidorenko, Graphs Combin., 11:2 (1995), 179–199 | DOI | MR | Zbl