New Constants in the Superintuitionistic Logic~$L2$
Matematičeskie zametki, Tome 94 (2013) no. 6, pp. 918-932.

Voir la notice de l'article provenant de la source Math-Net.Ru

A classification of all Novikov complete extensions of the superintuitionistic logic $L2$ in a language with several extra constants is given. The decidability of the (algorithmic) conservativeness problem for extensions of the form $L2+A(\overline\varphi)$ over $L2$ is established.
Keywords: superintuitionistic logic $L2$, conservativeness problem, language with extra constants, Novikov complete extension
Mots-clés : Heyting algebra.
@article{MZM_2013_94_6_a10,
     author = {A. D. Yashin and A. K. Koshcheeva},
     title = {New {Constants} in the {Superintuitionistic} {Logic~}$L2$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {918--932},
     publisher = {mathdoc},
     volume = {94},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a10/}
}
TY  - JOUR
AU  - A. D. Yashin
AU  - A. K. Koshcheeva
TI  - New Constants in the Superintuitionistic Logic~$L2$
JO  - Matematičeskie zametki
PY  - 2013
SP  - 918
EP  - 932
VL  - 94
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a10/
LA  - ru
ID  - MZM_2013_94_6_a10
ER  - 
%0 Journal Article
%A A. D. Yashin
%A A. K. Koshcheeva
%T New Constants in the Superintuitionistic Logic~$L2$
%J Matematičeskie zametki
%D 2013
%P 918-932
%V 94
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a10/
%G ru
%F MZM_2013_94_6_a10
A. D. Yashin; A. K. Koshcheeva. New Constants in the Superintuitionistic Logic~$L2$. Matematičeskie zametki, Tome 94 (2013) no. 6, pp. 918-932. http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a10/

[1] D. P. Skvortsov, “Ob intuitsionistskom ischislenii vyskazyvanii s dopolnitelnoi logicheskoi svyazkoi”, Issledovaniya po neklassicheskim logikam i formalnym sistemam, Nauka, M., 1983, 154–173 | MR

[2] Ya. S. Smetanich, “O polnote ischisleniya vyskazyvanii s dopolnitelnoi operatsiei ot odnoi peremennoi”, Tr. MMO, 9, GIFML, M., 1960, 357–371 | MR | Zbl

[3] Ya. S. Smetanich, “Ob ischisleniyakh vyskazyvanii s dopolnitelnoi operatsiei”, Dokl. AN SSSR, 139:2 (1961), 309–312 | MR

[4] A. D. Yashin, “O novoi konstante v intuitsionistskoi logike vyskazyvanii”, Fundament. i prikl. matem., 5:3 (1999), 903–926 | MR | Zbl

[5] A. D. Yashin, “Kontinualnost semeistva polnykh po Novikovu logik s novoi odnomestnoi svyazkoi”, Vestnik Mosk. un-ta. Ser. 1. Matem., mekh., 1997, no. 3, 22–25 | MR

[6] L. L. Maksimova, “Predtablichnye superintuitsionistskie logiki”, Algebra i logika, 11:5 (1972), 558–570 | MR

[7] A. Chagrov, M. Zakharyaschev, Modal Logic, Oxford Logic Guides, 35, Clarendon Press, New York, 1997 | MR

[8] A. D. Yashin, “O novykh konstantakh v dvukh predtablichnykh superintuitsionistskikh logikakh”, Algebra i logika, 50:2 (2011), 246–267 | MR | Zbl

[9] L. L. Esakia, Algebry Geitinga. I. Teoriya dvoistvennosti, Metsniereba, Tbilisi, 1985 | MR

[10] D. P. Dubhashi, “On decidable varieties of Heyting algebras”, J. Symbolic Logic, 57:3 (1992), 988–991 | DOI | MR

[11] E. Raseva, R. Sikorskii, Matematika metamatematiki, Matematicheskaya logika i osnovaniya matematiki, Nauka, M., 1972 | MR

[12] N. Bezhanishvili, D. de Jongh, Intuitionistic Logic, http://www.illc.uva.nl/Research/Reports/PP-2006-25.text.pdf

[13] R. I. Goldblatt, “Metamathematics of modal logic. I”, Rep. Math. Logic, 6 (1976), 41–77 | MR

[14] R. Sh. Grigoliya, “Svobodnye S4.3-algebry s konechnym chislom obrazuyuschikh”, Issledovaniya po neklassicheskim logikam i formalnym sistemam, Nauka, M., 1983, 281–287 | MR

[15] A. Yashin, “New intuitionistic logical constants and Novikov completeness”, Studia Logica, 63:2 (1997), 151–180 | DOI | MR

[16] A. D. Yashin, “New intuitionistic logical constants: undecidability of the conservativeness problem”, Computer Science Logic, Lecture Notes in Comput. Sci., 1258, Springer-Verlag, Berlin, 1997, 460–471 | MR