Approximation of Continuous Functions by Broken Lines with Constraints on the Angles between Adjacent Segments
Matematičeskie zametki, Tome 94 (2013) no. 6, pp. 806-818.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of best uniform approximation of a function continuous on an interval by piecewise linear continuous functions with fixed nodes and constraints on the angle between adjacent segments is considered.
Keywords: best approximation element, continuous functions, uniform approximation.
Mots-clés : alternance criterion
@article{MZM_2013_94_6_a1,
     author = {N. D. Baraboshkin},
     title = {Approximation of {Continuous} {Functions} by {Broken} {Lines} with {Constraints} on the {Angles} between {Adjacent} {Segments}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {806--818},
     publisher = {mathdoc},
     volume = {94},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a1/}
}
TY  - JOUR
AU  - N. D. Baraboshkin
TI  - Approximation of Continuous Functions by Broken Lines with Constraints on the Angles between Adjacent Segments
JO  - Matematičeskie zametki
PY  - 2013
SP  - 806
EP  - 818
VL  - 94
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a1/
LA  - ru
ID  - MZM_2013_94_6_a1
ER  - 
%0 Journal Article
%A N. D. Baraboshkin
%T Approximation of Continuous Functions by Broken Lines with Constraints on the Angles between Adjacent Segments
%J Matematičeskie zametki
%D 2013
%P 806-818
%V 94
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a1/
%G ru
%F MZM_2013_94_6_a1
N. D. Baraboshkin. Approximation of Continuous Functions by Broken Lines with Constraints on the Angles between Adjacent Segments. Matematičeskie zametki, Tome 94 (2013) no. 6, pp. 806-818. http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a1/

[1] V. I. Berdyshev, V. B. Kostousov, Ekstremalnye zadachi i modeli navigatsii po geofizicheskim polyam, UrO RAN, Ekaterinburg, 2007 | MR

[2] A. V. Mironenko, “Ravnomernoe priblizhenie klassom funktsii s ogranichennoi proizvodnoi”, Matem. zametki, 74:5 (2003), 696–712 | DOI | MR | Zbl

[3] I. P. Natanson, Konstruktivnaya teoriya funktsii, GITTL, M.–L., 1949 | MR | Zbl