Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2013_94_6_a1, author = {N. D. Baraboshkin}, title = {Approximation of {Continuous} {Functions} by {Broken} {Lines} with {Constraints} on the {Angles} between {Adjacent} {Segments}}, journal = {Matemati\v{c}eskie zametki}, pages = {806--818}, publisher = {mathdoc}, volume = {94}, number = {6}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a1/} }
TY - JOUR AU - N. D. Baraboshkin TI - Approximation of Continuous Functions by Broken Lines with Constraints on the Angles between Adjacent Segments JO - Matematičeskie zametki PY - 2013 SP - 806 EP - 818 VL - 94 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a1/ LA - ru ID - MZM_2013_94_6_a1 ER -
N. D. Baraboshkin. Approximation of Continuous Functions by Broken Lines with Constraints on the Angles between Adjacent Segments. Matematičeskie zametki, Tome 94 (2013) no. 6, pp. 806-818. http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a1/
[1] V. I. Berdyshev, V. B. Kostousov, Ekstremalnye zadachi i modeli navigatsii po geofizicheskim polyam, UrO RAN, Ekaterinburg, 2007 | MR
[2] A. V. Mironenko, “Ravnomernoe priblizhenie klassom funktsii s ogranichennoi proizvodnoi”, Matem. zametki, 74:5 (2003), 696–712 | DOI | MR | Zbl
[3] I. P. Natanson, Konstruktivnaya teoriya funktsii, GITTL, M.–L., 1949 | MR | Zbl