Approximation of Continuous Functions by Broken Lines with Constraints on the Angles between Adjacent Segments
Matematičeskie zametki, Tome 94 (2013) no. 6, pp. 806-818
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of best uniform approximation of a function continuous on an interval by piecewise linear continuous functions with fixed nodes and constraints on the angle between adjacent segments is considered.
Keywords:
best approximation element, continuous functions, uniform approximation.
Mots-clés : alternance criterion
Mots-clés : alternance criterion
@article{MZM_2013_94_6_a1,
author = {N. D. Baraboshkin},
title = {Approximation of {Continuous} {Functions} by {Broken} {Lines} with {Constraints} on the {Angles} between {Adjacent} {Segments}},
journal = {Matemati\v{c}eskie zametki},
pages = {806--818},
publisher = {mathdoc},
volume = {94},
number = {6},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a1/}
}
TY - JOUR AU - N. D. Baraboshkin TI - Approximation of Continuous Functions by Broken Lines with Constraints on the Angles between Adjacent Segments JO - Matematičeskie zametki PY - 2013 SP - 806 EP - 818 VL - 94 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a1/ LA - ru ID - MZM_2013_94_6_a1 ER -
N. D. Baraboshkin. Approximation of Continuous Functions by Broken Lines with Constraints on the Angles between Adjacent Segments. Matematičeskie zametki, Tome 94 (2013) no. 6, pp. 806-818. http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a1/