Absolute Convergence of Fourier Series of Almost-Periodic Functions
Matematičeskie zametki, Tome 94 (2013) no. 5, pp. 745-756.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present necessary and sufficient conditions for the absolute convergence of the Fourier series of almost-periodic (in the sense of Besicovitch) functions when the Fourier exponents have limit points at infinity or at zero. The structural properties of the functions are described by the modulus of continuity or the modulus of averaging of high order, depending on the behavior of the Fourier exponents. The case of uniform almost-periodic functions of bounded variation is considered.
Keywords: almost-periodic function, Fourier series, trigonometric polynomial, function of bounded variation, modulus of continuity, Parseval's inequality.
@article{MZM_2013_94_5_a9,
     author = {Yu. Kh. Khasanov},
     title = {Absolute {Convergence} of {Fourier} {Series} of {Almost-Periodic} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {745--756},
     publisher = {mathdoc},
     volume = {94},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a9/}
}
TY  - JOUR
AU  - Yu. Kh. Khasanov
TI  - Absolute Convergence of Fourier Series of Almost-Periodic Functions
JO  - Matematičeskie zametki
PY  - 2013
SP  - 745
EP  - 756
VL  - 94
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a9/
LA  - ru
ID  - MZM_2013_94_5_a9
ER  - 
%0 Journal Article
%A Yu. Kh. Khasanov
%T Absolute Convergence of Fourier Series of Almost-Periodic Functions
%J Matematičeskie zametki
%D 2013
%P 745-756
%V 94
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a9/
%G ru
%F MZM_2013_94_5_a9
Yu. Kh. Khasanov. Absolute Convergence of Fourier Series of Almost-Periodic Functions. Matematičeskie zametki, Tome 94 (2013) no. 5, pp. 745-756. http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a9/

[1] B. M. Levitan, Pochti-periodicheskie funktsii, GITTL, M., 1953 | MR | Zbl

[2] E. A. Bredikhina, “Ob absolyutnoi skhodimosti ryadov Fure pochti-periodicheskikh funktsii”, Dokl. AN SSSR, 111:6 (1956), 1163–1166 | MR | Zbl

[3] E. A. Bredikhina, “Nekotorye otsenki otklonenii chastnykh summ ryadov Fure ot pochti-periodicheskikh funktsii”, Matem. sb., 50:3 (1960), 369–382 | MR | Zbl

[4] J. Musielak, “O bezwzglednej zbieznosci czeregow Fouriera pewnych funcji prawie okresowich”, Bull. Acad. Polon. Sci. Cl. III, 5 (1957), 9–17 | MR | Zbl

[5] N. P. Kuptsov, “Ob absolyutnoi i ravnomernoi skhodimosti ryadov Fure pochti-periodicheskikh funktsii”, Matem. sb., 40:2 (1956), 157–178 | MR | Zbl

[6] Ya. G. Pritula, “Pro absolyutnu zbizhnist ryadiv Fure maizhe periodichnykh funktsii”, Visn. Lviv. un-tu, 137:5 (1971), 72–80

[7] A. S. Dzhafarov, G. A. Mamedov, “Ob absolyutnoi skhodimosti ryadov Fure pochti-periodicheskikh funktsii Bezikovicha”, Izv. AN Azerbaidzhan. SSR. Ser. Fiz.-tekhn., matem. nauk, 1983, no. 5, 8–13 | MR | Zbl

[8] A. A. Konyushkov, “Nailuchshie priblizheniya trigonometricheskimi polinomami i koeffitsienty Fure”, Matem. sb., 44:1 (1958), 53–84 | MR | Zbl