On the Realization of the Generalized Solenoid as a Hyperbolic Attractor of Sphere Diffeomorphisms
Matematičeskie zametki, Tome 94 (2013) no. 5, pp. 733-744.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions for a generalized solenoid to be realized as a hyperbolic attractor of sphere diffeomorphisms are obtained. The main theorem and its corollaries allow one to construct examples of attractors with various properties.
Keywords: attractor, diffeomorphism, generalized solenoid.
@article{MZM_2013_94_5_a8,
     author = {A. G. Fedotov},
     title = {On the {Realization} of the {Generalized} {Solenoid} as a {Hyperbolic} {Attractor} of {Sphere} {Diffeomorphisms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {733--744},
     publisher = {mathdoc},
     volume = {94},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a8/}
}
TY  - JOUR
AU  - A. G. Fedotov
TI  - On the Realization of the Generalized Solenoid as a Hyperbolic Attractor of Sphere Diffeomorphisms
JO  - Matematičeskie zametki
PY  - 2013
SP  - 733
EP  - 744
VL  - 94
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a8/
LA  - ru
ID  - MZM_2013_94_5_a8
ER  - 
%0 Journal Article
%A A. G. Fedotov
%T On the Realization of the Generalized Solenoid as a Hyperbolic Attractor of Sphere Diffeomorphisms
%J Matematičeskie zametki
%D 2013
%P 733-744
%V 94
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a8/
%G ru
%F MZM_2013_94_5_a8
A. G. Fedotov. On the Realization of the Generalized Solenoid as a Hyperbolic Attractor of Sphere Diffeomorphisms. Matematičeskie zametki, Tome 94 (2013) no. 5, pp. 733-744. http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a8/

[1] S. Smeil, “Differentsiruemye dinamicheskie sistemy”, UMN, 25:1 (1970), 113–185 | MR

[2] R. V. Plykin, “Istochniki i stoki $A$-diffeomorfizmov poverkhnostei”, Matem. sb., 94:2 (1974), 243–264 | MR | Zbl

[3] R. V. Plykin, “O geometrii giperbolicheskikh attraktorov gladkikh kaskadov”, UMN, 39:6(240) (1984), 75–113 | MR | Zbl

[4] V. Magnus, A. Karras, D. Soliter, Kombinatornaya teoriya grupp. Predstavlenie grupp v terminakh obrazuyuschikh i opredelyayuschikh sootnoshenii, Nauka, M., 1974 | MR | Zbl

[5] V. O. Manturov, Teoriya uzlov, RKhD, Izhevsk, 2005

[6] V. M. Alekseev, “Kvazisluchainye dinamicheskie sistemy. I. Kvazisluchainye diffeomorfizmy”, Matem. sb., 76:1 (1968), 72–134 | MR | Zbl

[7] A. G. Fedotov, “O solenoidakh Vilmsa i ikh realizatsii v dvumernykh dinamicheskikh sistemakh”, Dokl. AN SSSR, 252:4 (1980), 801–804 | MR | Zbl

[8] A. G. Fedotov, Primenenie approksimatsionnykh metodov dlya izucheniya bazisnykh mnozhestv gladkikh dinamicheskikh sistem, Dis. $\dots$ kand. fiz.-matem. nauk, MIEM, M., 1984

[9] R. V. Plykin, E. A. Sataev, S. V. Shlyachkov, “Dinamicheskie sistemy s giperbolicheskim povedeniem. Glava 3. Strannye attraktory”, Dinamicheskie sistemy – 9, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 66, VINITI, M., 1991, 100–148 | MR | Zbl

[10] V. T. Turaev, “Peresecheniya petel v dvumernykh mnogoobraziyakh”, Matem. sb., 106:4 (1978), 566–588 | MR | Zbl

[11] A. Yu. Zhirov, “Kombinatorika odnomernykh giperbolicheskikh attraktorov diffeomorfizmov poverkhnostei”, Dinamicheskie sistemy i smezhnye voprosy geometrii, Sbornik statei. Posvyaschaetsya pamyati akademika Andreya Andreevicha Bolibrukha, Tr. MIAN, 244, Nauka, M., 2004, 143–215 | MR | Zbl