The Problem of Traces for Sobolev Spaces with Muckenhoupt-Type Weights
Matematičeskie zametki, Tome 94 (2013) no. 5, pp. 720-732.

Voir la notice de l'article provenant de la source Math-Net.Ru

An exact description of traces of functions from the weighted Sobolev space $W_{p}^{l}(Q,\gamma)$ on the square are presented in detail. The weight function $\gamma \in A_p((0,1))$ depends on one “longitudinal” coordinate $x$. Traces are characterized in terms of the weighted Besov-type spaces $\widetilde{B}_{p}^{l-1/p}((0,1),\gamma)$ constructed in the paper. The characterization of traces is also obtained in the case $p=1$.
Keywords: trace of a function, weighted Sobolev space $W_{p}^{l}(Q,\gamma)$, weighted Besov-type spaces, Muckenhoupt-type weight, Hölder's inequality, Minkowski's inequality.
@article{MZM_2013_94_5_a7,
     author = {A. I. Tjulenev},
     title = {The {Problem} of {Traces} for {Sobolev} {Spaces} with {Muckenhoupt-Type} {Weights}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {720--732},
     publisher = {mathdoc},
     volume = {94},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a7/}
}
TY  - JOUR
AU  - A. I. Tjulenev
TI  - The Problem of Traces for Sobolev Spaces with Muckenhoupt-Type Weights
JO  - Matematičeskie zametki
PY  - 2013
SP  - 720
EP  - 732
VL  - 94
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a7/
LA  - ru
ID  - MZM_2013_94_5_a7
ER  - 
%0 Journal Article
%A A. I. Tjulenev
%T The Problem of Traces for Sobolev Spaces with Muckenhoupt-Type Weights
%J Matematičeskie zametki
%D 2013
%P 720-732
%V 94
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a7/
%G ru
%F MZM_2013_94_5_a7
A. I. Tjulenev. The Problem of Traces for Sobolev Spaces with Muckenhoupt-Type Weights. Matematičeskie zametki, Tome 94 (2013) no. 5, pp. 720-732. http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a7/

[1] H. Abels, M. Krbec, K. Schumacher, “On the trace space of a Sobolev space with a radial weight”, J. Funct. Spaces Appl., 6:3 (2008), 259–276 | DOI | MR | Zbl

[2] A. I. Tyulenev, “Kharakterizatsiya sledov vesovykh prostranstv Soboleva”, Tr. MFTI, 3:1 (2011), 141–145

[3] E. M. Stein, Harmonic Analysis. Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl

[4] V. S. Rychkov, “Littlewood–Paley theory and function spaces with $A_{p}^{\mathrm{loc}}$-weights”, Math. Nachr., 224:1 (2001), 145–180 | 3.0.CO;2-2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[5] V. I. Burenkov, Sobolev Spaces on Domains, Teubner-Texte Math., 137, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1998 | MR | Zbl

[6] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR | Zbl

[7] G. A. Kalyabin, S. I. Pismennaya, “Opisanie sledov funktsii, proizvodnye kotorykh ogranicheny s nekotorymi vesami”, Matem. zametki, 35:3 (1984), 357–368 | MR | Zbl

[8] E. Gagliardo, “Caratterizzazione delle trace sulla frontiera relative ad alcune classi di funzioni in n variabili”, Rend. Sem. Mat. Univ. Padova, 27 (1957), 284–305 | MR | Zbl

[9] D. D. Haroske, H.-J. Schmeisser, “On trace spaces of function spaces with a radial weight: the atomic approach”, Complex Var. Elliptic Equ., 55:8-10 (2010), 875–896 | MR