Homotopy Simplicial Faces and the Homology of Realizations of Simplicial Topological Spaces
Matematičeskie zametki, Tome 94 (2013) no. 5, pp. 661-681.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of a differential module with homotopy simplicial faces is introduced, which is a homotopy analog of the notion of a differential module with simplicial faces. The homotopy invariance of the structure of a differential module with homotopy simplicial faces is proved. Relationships between the construction of a differential module with homotopy simplicial faces and the theories of $A_\infty$-algebras and $D_\infty$-differential modules are found. Applications of the method of homotopy simplicial faces to describing the homology of realizations of simplicial topological spaces are presented.
Keywords: differential module with homotopy simplicial faces, $A_\infty$-algebra, $D_\infty$-differential module, realization of a simplicial topological space, SDR-data, category of $F_\infty$-modules, category of $D_\infty$-modules.
@article{MZM_2013_94_5_a2,
     author = {S. V. Lapin},
     title = {Homotopy {Simplicial} {Faces} and the {Homology} of {Realizations} of {Simplicial} {Topological} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {661--681},
     publisher = {mathdoc},
     volume = {94},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a2/}
}
TY  - JOUR
AU  - S. V. Lapin
TI  - Homotopy Simplicial Faces and the Homology of Realizations of Simplicial Topological Spaces
JO  - Matematičeskie zametki
PY  - 2013
SP  - 661
EP  - 681
VL  - 94
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a2/
LA  - ru
ID  - MZM_2013_94_5_a2
ER  - 
%0 Journal Article
%A S. V. Lapin
%T Homotopy Simplicial Faces and the Homology of Realizations of Simplicial Topological Spaces
%J Matematičeskie zametki
%D 2013
%P 661-681
%V 94
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a2/
%G ru
%F MZM_2013_94_5_a2
S. V. Lapin. Homotopy Simplicial Faces and the Homology of Realizations of Simplicial Topological Spaces. Matematičeskie zametki, Tome 94 (2013) no. 5, pp. 661-681. http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a2/

[1] V. A. Smirnov, “$A_\infty$-simplitsialnye ob'ekty i $A_\infty$-topologicheskie gruppy”, Matem. zametki, 66:6 (1999), 913–919 | DOI | MR | Zbl

[2] V. K. A. M. Gugenheim, L. A. Lambe, J. D. Stasheff, “Perturbation theory in differential homological algebra. II”, Illinois J. Math., 35:3 (1991), 357–373 | MR | Zbl

[3] J. P. May, Simplicial Objects in Algebraic Topology, Van Nostrand Math. Stud., 11, D. Van Nostrand, Princeton, NJ, 1967 | MR | Zbl

[4] T. V. Kadeishvili, “K teorii gomologii rassloennykh prostranstv”, UMN, 35:3 (1980), 183–188 | MR | Zbl

[5] J. D. Stasheff, “Homotopy associativity of $H$-spaces. I”, Trans. Amer. Math. Soc., 108:2 (1963), 275–292 | DOI | MR | Zbl

[6] S. V. Lapin, “Differentsialnye vozmuscheniya i $D_\infty $-differentsialnye moduli”, Matem. sb., 192:11 (2001), 55–76 | DOI | MR | Zbl

[7] V. A. Smirnov, Simplitsialnye i operadnye metody v algebraicheskoi topologii, Faktorial, M., 2002

[8] J.-L. Loday, B. Vallette, Algebraic Operads, Grundlehren Math. Wiss., 346, Springer-Verlag, Berlin, 2012 | MR | Zbl

[9] S. V. Lapin, “$D_\infty$-differentsialnye $E_\infty$-algebry i spektralnye posledovatelnosti rassloenii”, Matem. sb., 198:10 (2007), 3–30 | DOI | MR | Zbl

[10] S. V. Lapin, “Multiplikativnaya $A_\infty$-struktura v spektralnykh posledovatelnostyakh rassloenii”, Fundament. i prikl. matem., 14:6 (2008), 141–175 | MR