Distance between Conjugate Algebraic Numbers in Clusters
Matematičeskie zametki, Tome 94 (2013) no. 5, pp. 780-783.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: algebraic number, cluster, irreducible polynomial.
Mots-clés : integer polynomial
@article{MZM_2013_94_5_a13,
     author = {N. V. Budarina and F. G\"otze},
     title = {Distance between {Conjugate} {Algebraic} {Numbers} in {Clusters}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {780--783},
     publisher = {mathdoc},
     volume = {94},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a13/}
}
TY  - JOUR
AU  - N. V. Budarina
AU  - F. Götze
TI  - Distance between Conjugate Algebraic Numbers in Clusters
JO  - Matematičeskie zametki
PY  - 2013
SP  - 780
EP  - 783
VL  - 94
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a13/
LA  - ru
ID  - MZM_2013_94_5_a13
ER  - 
%0 Journal Article
%A N. V. Budarina
%A F. Götze
%T Distance between Conjugate Algebraic Numbers in Clusters
%J Matematičeskie zametki
%D 2013
%P 780-783
%V 94
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a13/
%G ru
%F MZM_2013_94_5_a13
N. V. Budarina; F. Götze. Distance between Conjugate Algebraic Numbers in Clusters. Matematičeskie zametki, Tome 94 (2013) no. 5, pp. 780-783. http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a13/

[1] A. Baker, W. M. Schmidt, Proc. London Math. Soc. (3), 21 (1970), 1–11 | DOI | MR | Zbl

[2] V. G. Sprindzhuk, Problema Malera v metricheskoi teorii chisel, Nauka i tekhnika, Minsk, 1967 | MR | Zbl

[3] K. Mahler, Michigan Math. J., 11:3 (1964), 257–262 | DOI | MR | Zbl

[4] V. V. Beresnevich, V. I. Bernik, F. Götze, Compositio Math., 146:5 (2010), 1165–1179 | DOI | MR | Zbl

[5] Y. Bugeaud, M. Mignotte, Proc. Edinb. Math. Soc. (2), 47:2 (2004), 553–556 | DOI | MR | Zbl

[6] Y. Bugeaud, M. Mignotte, Int. J. Number Theory, 6:3 (2010), 587–602 | DOI | MR | Zbl

[7] Y. Bugeaud, A. Dujella, Bull. Lond. Math. Soc., 43:6 (2011), 1239–1244 | DOI | MR | Zbl

[8] Y. Bugeaud, A. Dujella, Root Separation for Reducible Integer Polynomials, arXiv: math.NT/1306.2128v1

[9] V. V. Beresnevich, V. I. Bernik, F. Gettse, Dokl. NAN Belarusi, 54:5 (2010), 21–23 | MR | Zbl