A Generalization of Bihari's Lemma to the Case of Volterra Operators in Lebesgue Spaces
Matematičeskie zametki, Tome 94 (2013) no. 5, pp. 757-769.

Voir la notice de l'article provenant de la source Math-Net.Ru

For operators acting in the Lebesgue space $L_q(\Pi)$, $1$, an abstract analog of Bihari's lemma is stated and proved. We show that it can be used to derive a uniform pointwise estimate of the increment of the solution of a controlled functional-operator equation in the Lebesgue space. The procedure of reducing controlled initial boundary-value problems to this equation is illustrated by the Goursat–Darboux problem.
Keywords: Bihari's lemma, Volterra operator, controlled functional-operator equation, Goursat–Darboux problem, Gronwall's lemma
Mots-clés : Lebesgue space, Volterra $\delta$-chain.
@article{MZM_2013_94_5_a10,
     author = {A. V. Chernov},
     title = {A {Generalization} of {Bihari's} {Lemma} to the {Case} of {Volterra} {Operators} in {Lebesgue} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {757--769},
     publisher = {mathdoc},
     volume = {94},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a10/}
}
TY  - JOUR
AU  - A. V. Chernov
TI  - A Generalization of Bihari's Lemma to the Case of Volterra Operators in Lebesgue Spaces
JO  - Matematičeskie zametki
PY  - 2013
SP  - 757
EP  - 769
VL  - 94
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a10/
LA  - ru
ID  - MZM_2013_94_5_a10
ER  - 
%0 Journal Article
%A A. V. Chernov
%T A Generalization of Bihari's Lemma to the Case of Volterra Operators in Lebesgue Spaces
%J Matematičeskie zametki
%D 2013
%P 757-769
%V 94
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a10/
%G ru
%F MZM_2013_94_5_a10
A. V. Chernov. A Generalization of Bihari's Lemma to the Case of Volterra Operators in Lebesgue Spaces. Matematičeskie zametki, Tome 94 (2013) no. 5, pp. 757-769. http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a10/

[1] I. Bihari, “A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations”, Acta Math. Acad. Sci. Hungar., 7:1 (1956), 81–94 | DOI | MR | Zbl

[2] N. V. Azbelev, “O granitsakh primenimosti teoremy Chaplygina o differentsialnykh neravenstvakh”, Matem. sb., 39:2 (1956), 161–178 | MR | Zbl

[3] N. V. Azbelev, Z. B. Tsalyuk, “Ob integralnykh neravenstvakh. I”, Matem. sb., 56:3 (1962), 325–342 | MR | Zbl

[4] N. S. Kurpel, B. A. Shuvar, Dvustoronnie operatornye neravenstva i ikh primeneniya, Naukova dumka, Kiev, 1980 | MR | Zbl

[5] E. S. Zhukovskii, “Neravenstva Volterra v funktsionalnykh prostranstvakh”, Matem. sb., 195:9 (2004), 3–18 | DOI | MR | Zbl

[6] A. V. Chernov, “O potochechnoi otsenke raznosti reshenii upravlyaemogo funktsionalno-operatornogo uravneniya v lebegovykh prostranstvakh”, Matem. zametki, 88:2 (2010), 288–302 | DOI | MR | Zbl

[7] M. Aassila, “Global existence and energy decay for a damped quasilinear wave equation”, Math. Methods Appl. Sci., 21:13 (1998), 1185–1194 | 3.0.CO;2-Q class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[8] R. Ikehata, N. Okazawa, “Yosida approximation and nonlinear hyperbolic equations”, Nonlinear Anal., 15:5 (1990), 479–495 | MR | Zbl

[9] V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, RAM Res. Appl. Math., 36, John Wiley Sons, Chichester, 1994 | MR | Zbl

[10] D. Ba\u{i}nov, P. Simeonov, Integral Inequalities and Applications, Math. Appl. (East European Ser.), 57, Kluwer Acad. Publ., Dordrecht, 1992 | MR | Zbl

[11] S. S. Dragomir, Y.-H. Kim, “Some integral inequalities for functions of two variables”, Electron. J. Differential Equations, 2003, Paper No. 10, 13 pp. | MR | Zbl

[12] V. D. Nogin, Teoriya ustoichivosti dvizheniya, SPbGU, SPb, 2008

[13] M. A. Krasnoselskii, P. P. Zabreiko, E. I. Pustylnik, P. E. Sobolevskii, Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR | Zbl

[14] V. I. Sumin, A. V. Chernov, “O dostatochnykh usloviyakh ustoichivosti suschestvovaniya globalnykh reshenii volterrovykh operatornykh uravnenii”, Vestn. Nizhegorodsk. un-ta im. N. I. Lobachevskogo. Ser. Matem. model. i optim. upr., 26:1 (2003), 39–49

[15] V. I. Sumin, A. V. Chernov, Volterrovy operatornye uravneniya v banakhovykh prostranstvakh: ustoichivost suschestvovaniya globalnykh reshenii, Dep. v VINITI 25.04.00, No 1198-V00, Nizhegorodsk. un-t, N. Novgorod, 2000

[16] V. I. Sumin, “Ob obosnovanii gradientnykh metodov dlya raspredelennykh zadach optimalnogo upravleniya”, Zh. vychisl. matem. i matem. fiz., 30:1 (1990), 3–21 | MR | Zbl

[17] V. I. Sumin, “Upravlyaemye funktsionalnye volterrovy uravneniya v lebegovykh prostranstvakh”, Vestn. Nizhegorodsk. un-ta im. N. I. Lobachevskogo. Ser. Matem. model. i optim. upr., 19:2 (1998), 138–151

[18] V. I. Sumin, A. V. Chernov, “Operatory v prostranstvakh izmerimykh funktsii: volterrovost i kvazinilpotentnost”, Differents. uravneniya, 34:10 (1998), 1402–1411 | MR | Zbl

[19] Yu. L. Daletskii, M. G. Krein, Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nelineinyi analiz i ego prilozheniya, Nauka, M., 1970 | MR | Zbl

[20] A. V. Chernov, “O totalnom sokhranenii globalnoi razreshimosti funktsionalno-operatornykh uravnenii”, Vestn. Nizhegorodsk. un-ta im. N. I. Lobachevskogo, 2009, no. 3, 130–137

[21] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl

[22] G. Birkgof, Teoriya reshetok, Nauka, M., 1984 | MR | Zbl

[23] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Nelineinyi funktsionalnyi analiz i ego prilozheniya k uravneniyam v chastnykh proizvodnykh, Nauchnyi mir, M., 2008

[24] V. I. Sumin, Funktsionalnye volterrovy uravneniya v teorii optimalnogo upravleniya raspredelennymi sistemami, Chast I, NNGU, N. Novgorod, 1992

[25] A. V. Arguchintsev, O. A. Krutikova, “Optimizatsiya polulineinykh giperbolicheskikh sistem s gladkimi granichnymi upravleniyami”, Izv. vuzov. Matem., 2001, no. 2, 3–12 | MR | Zbl

[26] A. A. Zlotnik, “Slabye resheniya uravnenii dvizheniya vyazkoi szhimaemoi reagiruyuschei binarnoi smesi: edinstvennost i nepreryvnaya po Lipshitsu zavisimost ot dannykh”, Matem. zametki, 75:2 (2004), 307–310 | DOI | MR | Zbl

[27] S. F. Morozov, V. I. Sumin, “Optimizatsiya nelineinykh protsessov perenosa”, Dokl. AN SSSR, 247:4 (1979), 794–798 | MR | Zbl

[28] V. I. Plotnikov, V. I. Sumin, “Optimizatsiya raspredelennykh sistem v lebegovom prostranstve”, Sib. matem. zhurn., 22:6 (1981), 142–161 | MR | Zbl

[29] V. I. Sumin, “Silnoe vyrozhdenie osobykh upravlenii v raspredelennykh zadachakh optimizatsii”, Dokl. AN SSSR, 320:2 (1991), 295–299 | MR | Zbl