A Generalization of Bihari's Lemma to the Case of Volterra Operators in Lebesgue Spaces
Matematičeskie zametki, Tome 94 (2013) no. 5, pp. 757-769

Voir la notice de l'article provenant de la source Math-Net.Ru

For operators acting in the Lebesgue space $L_q(\Pi)$, $1$, an abstract analog of Bihari's lemma is stated and proved. We show that it can be used to derive a uniform pointwise estimate of the increment of the solution of a controlled functional-operator equation in the Lebesgue space. The procedure of reducing controlled initial boundary-value problems to this equation is illustrated by the Goursat–Darboux problem.
Keywords: Bihari's lemma, Volterra operator, controlled functional-operator equation, Goursat–Darboux problem, Gronwall's lemma
Mots-clés : Lebesgue space, Volterra $\delta$-chain.
@article{MZM_2013_94_5_a10,
     author = {A. V. Chernov},
     title = {A {Generalization} of {Bihari's} {Lemma} to the {Case} of {Volterra} {Operators} in {Lebesgue} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {757--769},
     publisher = {mathdoc},
     volume = {94},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a10/}
}
TY  - JOUR
AU  - A. V. Chernov
TI  - A Generalization of Bihari's Lemma to the Case of Volterra Operators in Lebesgue Spaces
JO  - Matematičeskie zametki
PY  - 2013
SP  - 757
EP  - 769
VL  - 94
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a10/
LA  - ru
ID  - MZM_2013_94_5_a10
ER  - 
%0 Journal Article
%A A. V. Chernov
%T A Generalization of Bihari's Lemma to the Case of Volterra Operators in Lebesgue Spaces
%J Matematičeskie zametki
%D 2013
%P 757-769
%V 94
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a10/
%G ru
%F MZM_2013_94_5_a10
A. V. Chernov. A Generalization of Bihari's Lemma to the Case of Volterra Operators in Lebesgue Spaces. Matematičeskie zametki, Tome 94 (2013) no. 5, pp. 757-769. http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a10/