On the Interpolation of Analytic Mappings
Matematičeskie zametki, Tome 94 (2013) no. 4, pp. 578-581.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(E_0,E_1)$ and $(H_0,H_1)$ be two pairs of complex Banach spaces densely and continuously embedded into each other, $E_1\hookrightarrow E_0$ and $H_1\hookrightarrow H_0$ and also let $\|x\|_{E_0} \le \|x\|_{E_1}$. By $E_\theta=[E_0,E_1]_\theta$ and $H_\theta=[H_0,H_1]_\theta$ we denote the spaces obtained by the complex interpolation method for $\theta\in[0,1]$, and by $B_\theta (0,R)$ we denote an open ball of radius $R$ in the space $E_\theta$. Let $\Phi\colon B_0(0,R)\to H_0$ be an analytic mapping taking $B_1(0,R)$ into $H_1$, and let the estimates $$ \|\Phi(x)\|_{H_\theta} \le C_\theta\|x\|_{H_\theta}\qquad \text{for all}\quad x\in B_\theta(0,R) $$ hold for $\theta = 0,\,1$. Then, for all $\theta\in (0,1)$, the mapping $\Phi$ takes the ball $B_\theta(0,r)$ of radius $r\in(0,R)$ in the space $E_\theta$ into $H_\theta$ and $$ \|\Phi(x)\|_{H_\theta}\le C_0^{1-\theta}C_1^\theta \frac{R}{R-r}\|x\|_{E_\theta}, \qquad x\in B_\theta(0,r). $$
Keywords: complex interpolation method, Banach space, homogenous analytic mapping, Lipschitz continuity.
@article{MZM_2013_94_4_a7,
     author = {A. M. Savchuk and A. A. Shkalikov},
     title = {On the {Interpolation} of {Analytic} {Mappings}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {578--581},
     publisher = {mathdoc},
     volume = {94},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a7/}
}
TY  - JOUR
AU  - A. M. Savchuk
AU  - A. A. Shkalikov
TI  - On the Interpolation of Analytic Mappings
JO  - Matematičeskie zametki
PY  - 2013
SP  - 578
EP  - 581
VL  - 94
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a7/
LA  - ru
ID  - MZM_2013_94_4_a7
ER  - 
%0 Journal Article
%A A. M. Savchuk
%A A. A. Shkalikov
%T On the Interpolation of Analytic Mappings
%J Matematičeskie zametki
%D 2013
%P 578-581
%V 94
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a7/
%G ru
%F MZM_2013_94_4_a7
A. M. Savchuk; A. A. Shkalikov. On the Interpolation of Analytic Mappings. Matematičeskie zametki, Tome 94 (2013) no. 4, pp. 578-581. http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a7/

[1] A. M. Savchuk, A. A. Shkalikov, “O sobstvennykh znacheniyakh operatora Shturma–Liuvillya s potentsialami iz prostranstv Soboleva”, Matem. zametki, 80:6 (2006), 864–884 | DOI | MR | Zbl

[2] A. M. Savchuk, A. A. Shkalikov, “O svoistvakh otobrazhenii, svyazannykh s obratnymi zadachami Shturma–Liuvillya”, Teoriya funktsii i nelineinye uravneniya v chastnykh proizvodnykh, Tr. MIAN, 260, MAIK, M., 2008, 227–247 | MR | Zbl

[3] A. M. Savchuk, A. A. Shkalikov, “Obratnye zadachi dlya operatora Shturma–Liuvillya s potentsialami iz prostranstv Soboleva. Ravnomernaya ustoichivost”, Funkts. analiz i ego pril., 44:4 (2010), 34–53 | DOI | MR

[4] L. Tartar, “Interpolation non linéaire of régularité”, J. Funct. Anal., 9:4 (1972), 469–489 | DOI | MR | Zbl

[5] J. Pöshel, E. Trubowitz, Inverse Spectral Theory, Pure Appl. Math., 130, Academic Press, Boston, MA, 1987 | MR | Zbl

[6] Kh. Tribel, Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR | Zbl

[7] I. Berg, I. Lefstrem, Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR | Zbl