Large Deviations and the Rate of Convergence in the Birkhoff Ergodic Theorem
Matematičeskie zametki, Tome 94 (2013) no. 4, pp. 569-577.

Voir la notice de l'article provenant de la source Math-Net.Ru

For bounded averaged functions, we prove the equivalence of the power-law and exponential rates of convergence in the Birkhoff individual ergodic theorem with the same asymptotics of the probability of large deviations in this theorem.
Keywords: pointwise ergodic theorem, rates of convergence in ergodic theorems, large deviations, Anosov systems.
Mots-clés : billiards
@article{MZM_2013_94_4_a6,
     author = {A. G. Kachurovskii and I. V. Podvigin},
     title = {Large {Deviations} and the {Rate} of {Convergence} in the {Birkhoff} {Ergodic} {Theorem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {569--577},
     publisher = {mathdoc},
     volume = {94},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a6/}
}
TY  - JOUR
AU  - A. G. Kachurovskii
AU  - I. V. Podvigin
TI  - Large Deviations and the Rate of Convergence in the Birkhoff Ergodic Theorem
JO  - Matematičeskie zametki
PY  - 2013
SP  - 569
EP  - 577
VL  - 94
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a6/
LA  - ru
ID  - MZM_2013_94_4_a6
ER  - 
%0 Journal Article
%A A. G. Kachurovskii
%A I. V. Podvigin
%T Large Deviations and the Rate of Convergence in the Birkhoff Ergodic Theorem
%J Matematičeskie zametki
%D 2013
%P 569-577
%V 94
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a6/
%G ru
%F MZM_2013_94_4_a6
A. G. Kachurovskii; I. V. Podvigin. Large Deviations and the Rate of Convergence in the Birkhoff Ergodic Theorem. Matematičeskie zametki, Tome 94 (2013) no. 4, pp. 569-577. http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a6/

[1] I. Melbourne, M. Nicol, “Large deviations for nonuniformly hyperbolic systems”, Trans. Amer. Math. Soc., 360:12 (2008), 6661–6676 | DOI | MR | Zbl

[2] I. Melbourne, “Large and moderate deviations for slowly mixing dynamical systems”, Proc. Amer. Math. Soc., 137:5 (2009), 1735–1741 | DOI | MR | Zbl

[3] S. Waddington, “Large deviation asymptotics for Anosov flows”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13:4 (1996), 445–484 | MR | Zbl

[4] V. Araújo, A. I. Bufetov, “A large deviations bound for the Teichmüller flow on the moduli space of abelian differentials”, Ergodic Theory Dynam. Systems, 31:4 (2011), 1043–1071 | DOI | MR | Zbl

[5] A. G. Kachurovskii, V. V. Sedalischev, “Konstanty otsenok skorosti skhodimosti v ergodicheskikh teoremakh fon Neimana i Birkgofa”, Matem. sb., 202:8 (2011), 21–40 | DOI | MR | Zbl

[6] A. G. Kachurovskii, V. V. Sedalischev, “O konstantakh otsenok skorosti skhodimosti v ergodicheskoi teoreme Birkgofa”, Matem. zametki, 91:4 (2012), 624–628 | DOI

[7] A. G. Kachurovskii, “Skorosti skhodimosti v ergodicheskikh teoremakh”, UMN, 51:4 (1996), 73–124 | DOI | MR | Zbl

[8] Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, eds. M. Abramovits, I. Stigan, Nauka, M., 1979 | MR | Zbl