Large Deviations and the Rate of Convergence in the Birkhoff Ergodic Theorem
Matematičeskie zametki, Tome 94 (2013) no. 4, pp. 569-577
Voir la notice de l'article provenant de la source Math-Net.Ru
For bounded averaged functions, we prove the equivalence of the power-law and exponential rates of convergence in the Birkhoff individual ergodic theorem with the same asymptotics of the probability of large deviations in this theorem.
Keywords:
pointwise ergodic theorem, rates of convergence in ergodic theorems, large deviations, Anosov systems.
Mots-clés : billiards
Mots-clés : billiards
@article{MZM_2013_94_4_a6,
author = {A. G. Kachurovskii and I. V. Podvigin},
title = {Large {Deviations} and the {Rate} of {Convergence} in the {Birkhoff} {Ergodic} {Theorem}},
journal = {Matemati\v{c}eskie zametki},
pages = {569--577},
publisher = {mathdoc},
volume = {94},
number = {4},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a6/}
}
TY - JOUR AU - A. G. Kachurovskii AU - I. V. Podvigin TI - Large Deviations and the Rate of Convergence in the Birkhoff Ergodic Theorem JO - Matematičeskie zametki PY - 2013 SP - 569 EP - 577 VL - 94 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a6/ LA - ru ID - MZM_2013_94_4_a6 ER -
A. G. Kachurovskii; I. V. Podvigin. Large Deviations and the Rate of Convergence in the Birkhoff Ergodic Theorem. Matematičeskie zametki, Tome 94 (2013) no. 4, pp. 569-577. http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a6/