The Global Dimension of $\omega$-Smash Coproducts
Matematičeskie zametki, Tome 94 (2013) no. 4, pp. 541-551.

Voir la notice de l'article provenant de la source Math-Net.Ru

We mainly study the global dimension of $\omega$-smash coproducts. We show that if $H$ is a Hopf algebra with a bijective antipode $S_H$, and $C{_\omega}\bowtie H$ denotes the $\omega$-smash coproduct, then $$ \mathrm{gl}.\mathrm{dim}(C_\omega\bowtie H)\leq \mathrm{gl}.\mathrm{dim}(C)+\mathrm{gl}.\mathrm{dim}(H), $$ where $\mathrm{gl}.\mathrm{dim}(H)$ denotes the global dimension of $H$ as a coalgebra.
Keywords: spectral sequence, $\omega$-smash coproduct.
Mots-clés : global dimension
@article{MZM_2013_94_4_a4,
     author = {L. Yu. Zhang and W. Pan},
     title = {The {Global} {Dimension} of $\omega${-Smash} {Coproducts}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {541--551},
     publisher = {mathdoc},
     volume = {94},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a4/}
}
TY  - JOUR
AU  - L. Yu. Zhang
AU  - W. Pan
TI  - The Global Dimension of $\omega$-Smash Coproducts
JO  - Matematičeskie zametki
PY  - 2013
SP  - 541
EP  - 551
VL  - 94
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a4/
LA  - ru
ID  - MZM_2013_94_4_a4
ER  - 
%0 Journal Article
%A L. Yu. Zhang
%A W. Pan
%T The Global Dimension of $\omega$-Smash Coproducts
%J Matematičeskie zametki
%D 2013
%P 541-551
%V 94
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a4/
%G ru
%F MZM_2013_94_4_a4
L. Yu. Zhang; W. Pan. The Global Dimension of $\omega$-Smash Coproducts. Matematičeskie zametki, Tome 94 (2013) no. 4, pp. 541-551. http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a4/

[1] S. Caenepeel, B. Ion, G. Militaru, S. Zhu, “The factorization problem and the smash biproduct of algebras and coalgebras”, Algebr. Represent. Theory, 3:1 (2000), 19–42 | DOI | MR | Zbl

[2] Y. Doi, “Homological coalgebra”, J. Math. Soc. Japan, 33:1 (1981), 31–50 | DOI | MR | Zbl

[3] C. Nastasescu, B. Torrecillas, Y. H. Zhang, “Hereditary coalgebras”, Comm. Algebra, 24:4 (1996), 1521–1528 | DOI | MR | Zbl

[4] S. Dǎscǎlescu, C. Nǎstǎsescu, B. Torrecillas, “Homological dimension of coalgebras and crossed coproducts”, $K$-Theory, 23:1 (2001), 53–65 | MR | Zbl

[5] M. E. Lorenz, M. Lorenz, “On crossed products of Hopf algebras”, Proc. Amer. Math. Soc., 123:1 (1995), 33–38 | DOI | MR | Zbl

[6] Ji Qingzhong, Qin Hourong, “On smash products of Hopf algebras”, Comm. Algebra, 34:9 (2006), 3203–3222 | DOI | MR | Zbl

[7] S. Montgomery, Hopf Algebras and Their Actions on Rings, CBMS Regional Conf. Ser. in Math., 82, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl

[8] J. J. Rotman, An Introduction to Homological Algebra, Pure Appl. Math., 85, Academic Press, New York, 1979 | MR | Zbl

[9] S. Dǎscǎlescu, C. Nǎstǎsescu, Ş. Raianu, Hopf Algebras. An Introduction, Monogr. Textbooks Pure Appl. Math., 235, Marcel Dekker, New York, 2001 | MR | Zbl