Obstructions to Embeddings of Bundles of Matrix Algebras in a Trivial Bundle
Matematičeskie zametki, Tome 94 (2013) no. 4, pp. 521-540.

Voir la notice de l'article provenant de la source Math-Net.Ru

We evaluate the cohomology obstructions to the existence of fiber-preserving unital embedding of a locally trivial bundle $A_k\to X$ whose fiber is a complex matrix algebra $M_k(\mathbb C)$ in a trivial bundle with fiber $M_{kl}(\mathbb C)$ under the assumption that $(k,l)=1$. It is proved that the first obstruction coincides with the obstruction to the reduction of the structure group $\mathrm{PGL}_k(\mathbb C)$ of the bundle $A_k$ to $\mathrm{SL}_k(\mathbb C)$, which coincides with the first Chern class $c_1(\xi_k)$ reduced modulo $k$ under the assumption that $A_k\cong\mathrm{End}(\xi_k)$ for some vector $\mathbb C^k$-bundle $\xi_k\to X$. If the first obstruction vanishes, then $A_k\cong\mathrm{End}(\widetilde\xi_k)$ for some vector bundle $\widetilde\xi_k\to X$ with structure group $\mathrm{SL}_k(\mathbb C)$, and the second obstruction is $c_2(\widetilde\xi_k)\operatorname{mod} k \in H^4(X,\mathbb Z/k\mathbb Z)$. Further, the higher obstructions are defined using a Postnikov tower, and each of the obstructions is defined on the kernel of the previous obstruction.
Keywords: fiber-preserving unital embedding, locally trivial bundle, cohomology obstruction, complex matrix algebra, Chern classes, Postnikov tower.
Mots-clés : structure group
@article{MZM_2013_94_4_a3,
     author = {A. V. Ershov},
     title = {Obstructions to {Embeddings} of {Bundles} of {Matrix} {Algebras} in a {Trivial} {Bundle}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {521--540},
     publisher = {mathdoc},
     volume = {94},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a3/}
}
TY  - JOUR
AU  - A. V. Ershov
TI  - Obstructions to Embeddings of Bundles of Matrix Algebras in a Trivial Bundle
JO  - Matematičeskie zametki
PY  - 2013
SP  - 521
EP  - 540
VL  - 94
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a3/
LA  - ru
ID  - MZM_2013_94_4_a3
ER  - 
%0 Journal Article
%A A. V. Ershov
%T Obstructions to Embeddings of Bundles of Matrix Algebras in a Trivial Bundle
%J Matematičeskie zametki
%D 2013
%P 521-540
%V 94
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a3/
%G ru
%F MZM_2013_94_4_a3
A. V. Ershov. Obstructions to Embeddings of Bundles of Matrix Algebras in a Trivial Bundle. Matematičeskie zametki, Tome 94 (2013) no. 4, pp. 521-540. http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a3/

[1] A. V. Ershov, “Gomotopicheskaya teoriya rassloenii so sloem matrichnaya algebra”, Topologiya, analiz i smezhnye voprosy, Sovremennaya matematika i ee prilozheniya, 1, In-t kibernet. AN Gruzii, Tbilisi, 2003, 33–55

[2] R. Pirs, Assotsiativnye algebry, Mir, M., 1986 | MR | Zbl

[3] M. Karubi, K-teoriya. Vvedenie, Mir, M., 1981 | MR | Zbl

[4] F. P. Peterson, “Some remarks on Chern classes”, Ann. of Math. (2), 69:2 (1959), 414–420 | DOI | MR | Zbl