Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2013_94_4_a2, author = {Yu. Wang and L. Yu. Zhang and R. F. Niu}, title = {Structure {Theorem} for {Dual} {Quasi-Hopf} {Bicomodules} and {Its} {Application}}, journal = {Matemati\v{c}eskie zametki}, pages = {506--520}, publisher = {mathdoc}, volume = {94}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a2/} }
TY - JOUR AU - Yu. Wang AU - L. Yu. Zhang AU - R. F. Niu TI - Structure Theorem for Dual Quasi-Hopf Bicomodules and Its Application JO - Matematičeskie zametki PY - 2013 SP - 506 EP - 520 VL - 94 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a2/ LA - ru ID - MZM_2013_94_4_a2 ER -
Yu. Wang; L. Yu. Zhang; R. F. Niu. Structure Theorem for Dual Quasi-Hopf Bicomodules and Its Application. Matematičeskie zametki, Tome 94 (2013) no. 4, pp. 506-520. http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a2/
[1] V. G. Drinfeld, “Kvazikhopfovy algebry”, Algebra i analiz, 1:6 (1989), 114–148 | MR | Zbl
[2] V. G. Drinfel'd, “Quasi-Hopf algebras and Knizhnik–Zamolodchikov equations”, Problems of Modern Quantum Field Theory, Res. Rep. Phys., Springer-Verlag, Berlin, 1989, 1–13 | MR
[3] D. Altschuler, A. Coste, “Quasi-quantum groups, knots, three-manifolds, and topological field theory”, Comm. Math. Phys., 150:1 (1992), 83–107 | DOI | MR | Zbl
[4] R. Dijkgraaf, V. Pasquier, P. Roche, “Quasi-Hopf algebras, group cohomology, and orbifold models”, Nuclear Phys. B Proc. Suppl., 18B (1990), 60–72 | MR | Zbl
[5] D. Bulacu, F. Panaite, F. V. Oystaeyen, “Quasi-Hopf algebra actions and smash products”, Comm. Algebra, 28:2 (2000), 631–651 | DOI | MR | Zbl
[6] D. Bulacu, E. Nauwelaerts, “Dual quasi-Hopf algebra coactions, smash coproducts, and relative Hopf modules”, Rev. Roumaine Math. Pures Appl., 47:4 (2002), 415–443 | MR | Zbl
[7] F. Panaite, F. V. Oystaeyen, “Quasi-Hopf algebars and representations of octonions and other quasialgebras”, J. Math. Phys., 45:10 (2004), 3912–3929 | DOI | MR | Zbl
[8] S. Majid, Foundations of Quantum Group Theory, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[9] D. Bulacu, E. Nauwelaerts, “Relative Hopf modules for (dual) quasi-Hopf algebras”, J. Algebra, 229:2 (2000), 632–659 | DOI | MR | Zbl
[10] F. Hausser, F. Nill, Integral Theory for Quasi-Hopf Algebras, 1999, arXiv: math.QA/9904164
[11] F. Hausser, F. Nill, “Diagonal crossed products by dual of quasi-quantum groups”, Rev. Math. Phys., 11:5 (1999), 553–629 | DOI | MR | Zbl
[12] F. Panaite, F. V. Oystaeyen, “A structure theorem for quasi-Hopf comodule algebras”, Proc. Amer. Math. Soc., 135:6 (2007), 1669–1677 | DOI | MR | Zbl
[13] C. Kassel, Quantum Groups, Grad. Texts in Math., 155, Springer-Verlag, Berlin, 1995 | MR | Zbl
[14] S. Montgomery, Hopf Algebras and Their Actions on Rings, CBMS Regional Conf. Ser. in Math., 82, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl