Structure Theorem for Dual Quasi-Hopf Bicomodules and Its Application
Matematičeskie zametki, Tome 94 (2013) no. 4, pp. 506-520.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a structure theorem for dual quasi-Hopf bicomodules, and also obtain the structure theorem $C\cong D\rtimes H$ for dual quasi-Hopf module coalgebras, where $H$ is a dual quasi-Hopf algebra, $C$ a right $H$-module coalgebra, and $D$ a left $H$-comodule coalgebra in the tensor category $^{H}\mathcal{M}$ induced from $C$, and $D\rtimes H$ the smash coproduct introduced by Bulacu and Nauwelaerts.
Mots-clés : dual quasi-Hopf bicomodules, Hopf module coalgebras, comodule coalgebras
Keywords: smash coproducts.
@article{MZM_2013_94_4_a2,
     author = {Yu. Wang and L. Yu. Zhang and R. F. Niu},
     title = {Structure {Theorem} for {Dual} {Quasi-Hopf} {Bicomodules} and {Its} {Application}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {506--520},
     publisher = {mathdoc},
     volume = {94},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a2/}
}
TY  - JOUR
AU  - Yu. Wang
AU  - L. Yu. Zhang
AU  - R. F. Niu
TI  - Structure Theorem for Dual Quasi-Hopf Bicomodules and Its Application
JO  - Matematičeskie zametki
PY  - 2013
SP  - 506
EP  - 520
VL  - 94
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a2/
LA  - ru
ID  - MZM_2013_94_4_a2
ER  - 
%0 Journal Article
%A Yu. Wang
%A L. Yu. Zhang
%A R. F. Niu
%T Structure Theorem for Dual Quasi-Hopf Bicomodules and Its Application
%J Matematičeskie zametki
%D 2013
%P 506-520
%V 94
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a2/
%G ru
%F MZM_2013_94_4_a2
Yu. Wang; L. Yu. Zhang; R. F. Niu. Structure Theorem for Dual Quasi-Hopf Bicomodules and Its Application. Matematičeskie zametki, Tome 94 (2013) no. 4, pp. 506-520. http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a2/

[1] V. G. Drinfeld, “Kvazikhopfovy algebry”, Algebra i analiz, 1:6 (1989), 114–148 | MR | Zbl

[2] V. G. Drinfel'd, “Quasi-Hopf algebras and Knizhnik–Zamolodchikov equations”, Problems of Modern Quantum Field Theory, Res. Rep. Phys., Springer-Verlag, Berlin, 1989, 1–13 | MR

[3] D. Altschuler, A. Coste, “Quasi-quantum groups, knots, three-manifolds, and topological field theory”, Comm. Math. Phys., 150:1 (1992), 83–107 | DOI | MR | Zbl

[4] R. Dijkgraaf, V. Pasquier, P. Roche, “Quasi-Hopf algebras, group cohomology, and orbifold models”, Nuclear Phys. B Proc. Suppl., 18B (1990), 60–72 | MR | Zbl

[5] D. Bulacu, F. Panaite, F. V. Oystaeyen, “Quasi-Hopf algebra actions and smash products”, Comm. Algebra, 28:2 (2000), 631–651 | DOI | MR | Zbl

[6] D. Bulacu, E. Nauwelaerts, “Dual quasi-Hopf algebra coactions, smash coproducts, and relative Hopf modules”, Rev. Roumaine Math. Pures Appl., 47:4 (2002), 415–443 | MR | Zbl

[7] F. Panaite, F. V. Oystaeyen, “Quasi-Hopf algebars and representations of octonions and other quasialgebras”, J. Math. Phys., 45:10 (2004), 3912–3929 | DOI | MR | Zbl

[8] S. Majid, Foundations of Quantum Group Theory, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[9] D. Bulacu, E. Nauwelaerts, “Relative Hopf modules for (dual) quasi-Hopf algebras”, J. Algebra, 229:2 (2000), 632–659 | DOI | MR | Zbl

[10] F. Hausser, F. Nill, Integral Theory for Quasi-Hopf Algebras, 1999, arXiv: math.QA/9904164

[11] F. Hausser, F. Nill, “Diagonal crossed products by dual of quasi-quantum groups”, Rev. Math. Phys., 11:5 (1999), 553–629 | DOI | MR | Zbl

[12] F. Panaite, F. V. Oystaeyen, “A structure theorem for quasi-Hopf comodule algebras”, Proc. Amer. Math. Soc., 135:6 (2007), 1669–1677 | DOI | MR | Zbl

[13] C. Kassel, Quantum Groups, Grad. Texts in Math., 155, Springer-Verlag, Berlin, 1995 | MR | Zbl

[14] S. Montgomery, Hopf Algebras and Their Actions on Rings, CBMS Regional Conf. Ser. in Math., 82, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl