On the Resolvent of the Gauss Operator
Matematičeskie zametki, Tome 94 (2013) no. 4, pp. 628-631
Cet article a éte moissonné depuis la source Math-Net.Ru
Keywords:
Gauss operator, resolvent of the Gauss operator, spectrum of the Gauss operator, continued fraction, Fredholm determinant, Weber integral, Lipschitz–Hankel integral.
@article{MZM_2013_94_4_a12,
author = {A. I. Aptekarev and V. S. Buyarov},
title = {On the {Resolvent} of the {Gauss} {Operator}},
journal = {Matemati\v{c}eskie zametki},
pages = {628--631},
year = {2013},
volume = {94},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a12/}
}
A. I. Aptekarev; V. S. Buyarov. On the Resolvent of the Gauss Operator. Matematičeskie zametki, Tome 94 (2013) no. 4, pp. 628-631. http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a12/
[1] A. Ya. Khinchin, Tsepnye drobi, Nauka, M., 1978 | MR
[2] V. I. Arnold, Tsepnye drobi, MTsNMO, M., 2000
[3] R. Kuzmin, Atti Congr. Intern. Bologne, 6 (1928), 83–89 | Zbl
[4] E. Wirsing, Acta Arith., 24 (1974), 507–528 | MR | Zbl
[5] K. I. Babenko, S. P. Yurev, Ob odnoi zadache Gaussa, Preprinty IPM No 63, 1977
[6] K. I. Babenko, Dokl. AN SSSR, 238:5 (1978), 1021–1024 | MR | Zbl
[7] S. G. Mikhlin, Lektsii po integralnym uravneniyam, Fizmatgiz, M., 1959 | MR
[8] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge, 1922 | MR | Zbl