Torsion-Free Weakly Transitive $E$-Engel Abelian Groups
Matematičeskie zametki, Tome 94 (2013) no. 4, pp. 620-627

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if all the endomorphisms of a reduced torsion-free weakly transitive Abelian group are bounded right-nilpotent, then its ring of endomorphisms is commutative. The ring of endomorphisms of a torsion-free Abelian group with periodic group of automorphisms and Engel ring of endomorphisms is also commutative.
Keywords: $E$-Engel Abelian group, weakly transitive group, ring of endomorphisms, periodic group of automorphisms, $n$-step Engel ring, Lie algebra, $E$-nilpotent group, nilpotent element of a ring.
Mots-clés : torsion-free Abelian group
@article{MZM_2013_94_4_a11,
     author = {A. R. Chekhlov},
     title = {Torsion-Free {Weakly} {Transitive} $E${-Engel} {Abelian} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {620--627},
     publisher = {mathdoc},
     volume = {94},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a11/}
}
TY  - JOUR
AU  - A. R. Chekhlov
TI  - Torsion-Free Weakly Transitive $E$-Engel Abelian Groups
JO  - Matematičeskie zametki
PY  - 2013
SP  - 620
EP  - 627
VL  - 94
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a11/
LA  - ru
ID  - MZM_2013_94_4_a11
ER  - 
%0 Journal Article
%A A. R. Chekhlov
%T Torsion-Free Weakly Transitive $E$-Engel Abelian Groups
%J Matematičeskie zametki
%D 2013
%P 620-627
%V 94
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a11/
%G ru
%F MZM_2013_94_4_a11
A. R. Chekhlov. Torsion-Free Weakly Transitive $E$-Engel Abelian Groups. Matematičeskie zametki, Tome 94 (2013) no. 4, pp. 620-627. http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a11/