Torsion-Free Weakly Transitive $E$-Engel Abelian Groups
Matematičeskie zametki, Tome 94 (2013) no. 4, pp. 620-627.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if all the endomorphisms of a reduced torsion-free weakly transitive Abelian group are bounded right-nilpotent, then its ring of endomorphisms is commutative. The ring of endomorphisms of a torsion-free Abelian group with periodic group of automorphisms and Engel ring of endomorphisms is also commutative.
Keywords: $E$-Engel Abelian group, weakly transitive group, ring of endomorphisms, periodic group of automorphisms, $n$-step Engel ring, Lie algebra, $E$-nilpotent group, nilpotent element of a ring.
Mots-clés : torsion-free Abelian group
@article{MZM_2013_94_4_a11,
     author = {A. R. Chekhlov},
     title = {Torsion-Free {Weakly} {Transitive} $E${-Engel} {Abelian} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {620--627},
     publisher = {mathdoc},
     volume = {94},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a11/}
}
TY  - JOUR
AU  - A. R. Chekhlov
TI  - Torsion-Free Weakly Transitive $E$-Engel Abelian Groups
JO  - Matematičeskie zametki
PY  - 2013
SP  - 620
EP  - 627
VL  - 94
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a11/
LA  - ru
ID  - MZM_2013_94_4_a11
ER  - 
%0 Journal Article
%A A. R. Chekhlov
%T Torsion-Free Weakly Transitive $E$-Engel Abelian Groups
%J Matematičeskie zametki
%D 2013
%P 620-627
%V 94
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a11/
%G ru
%F MZM_2013_94_4_a11
A. R. Chekhlov. Torsion-Free Weakly Transitive $E$-Engel Abelian Groups. Matematičeskie zametki, Tome 94 (2013) no. 4, pp. 620-627. http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a11/

[1] A. A. Tuganbaev, Teoriya kolets. Arifmeticheskie moduli i koltsa, MTsNMO, M., 2009

[2] A. G. Kurosh, Teoriya grupp, Nauka, M., 1967 | MR | Zbl

[3] A. I. Kostrikin, Vokrug Bernsaida, Nauka, M., 1986 | MR | Zbl

[4] A. R. Chekhlov, “E-nilpotentnye i E-razreshimye abelevy gruppy klassa 2”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2010, no. 1, 59–71

[5] A. R. Chekhlov, “Ob abelevykh gruppakh s normalnym koltsom endomorfizmov”, Algebra i logika, 48:4 (2009), 520–539 | MR | Zbl

[6] A. R. Chekhlov, “E-engelevy abelevy gruppy stupeni $\le2$”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2012, no. 1, 54–60

[7] A. R. Chekhlov, “O proektivnom kommutante abelevykh grupp”, Sib. matem. zhurn., 53:2 (2012), 451–464 | MR | Zbl

[8] A. R. Chekhlov, “Ob abelevykh gruppakh s nilpotentnymi kommutatorami endomorfizmov”, Izv. vuzov. Matem., 2012, no. 10, 60–73 | Zbl

[9] A. R. Chekhlov, “O proektivno razreshimykh abelevykh gruppakh”, Sib. matem. zhurn., 53:5 (2012), 1157–1165 | Zbl

[10] E. I. Zelmanov, “Ob engelevykh algebrakh Li”, Dokl. AN SSSR, 292:2 (1987), 265–268 | MR | Zbl

[11] E. I. Zelmanov, “O nekotorykh problemakh teorii grupp i algebr Li”, Matem. sb., 180:2 (1989), 159–167 | MR | Zbl

[12] Yu. P. Razmyslov, “Ob engelevykh algebrakh Li”, Algebra i logika, 10:1 (1971), 33–44 | MR | Zbl

[13] S. Bachmuth, H. Y. Mochizuki, D. A. Walkup, “A nonsolvable group of exponent 5”, Bull. Amer. Math. Soc., 76 (1970), 638–640 | DOI | MR | Zbl

[14] E. S. Golod, “O nil-algebrakh i finitno-approksimiruemykh $p$-gruppakh”, Izv. AN SSSR. Ser. matem., 28:2 (1964), 273–276 | MR | Zbl

[15] L. Fuks, Beskonechnye abelevy gruppy, T. 2, Mir, M., 1977 | MR | Zbl

[16] O. B. Finogenova, “Mnogoobraziya assotsiativnykh algebr, udovletvoryayuschie tozhdestvam Engelya”, Algebra i logika, 43:4 (2004), 482–505 | MR | Zbl

[17] A. R. Chekhlov, “Ob odnom klasse endotranzitivnykh grupp”, Matem. zametki, 69:6 (2001), 944–949 | DOI | MR | Zbl

[18] A. R. Chekhlov, “Vpolne tranzitivnye gruppy bez krucheniya konechnogo $p$-ranga”, Algebra i logika, 40:6 (2001), 698–715 | MR | Zbl

[19] B. Goldsmith, L. Strüngmann, “Torsion-free weakly transitive abelian groups”, Comm. Algebra, 33:4 (2005), 1177–1191 | DOI | MR | Zbl