Torsion-Free Weakly Transitive $E$-Engel Abelian Groups
Matematičeskie zametki, Tome 94 (2013) no. 4, pp. 620-627
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that if all the endomorphisms of a reduced torsion-free weakly transitive Abelian group are bounded right-nilpotent, then its ring of endomorphisms is commutative. The ring of endomorphisms of a torsion-free Abelian group with periodic group of automorphisms and Engel ring of endomorphisms is also commutative.
Keywords:
$E$-Engel Abelian group, weakly transitive group, ring of endomorphisms, periodic group of automorphisms, $n$-step Engel ring, Lie algebra, $E$-nilpotent group, nilpotent element of a ring.
Mots-clés : torsion-free Abelian group
Mots-clés : torsion-free Abelian group
@article{MZM_2013_94_4_a11,
author = {A. R. Chekhlov},
title = {Torsion-Free {Weakly} {Transitive} $E${-Engel} {Abelian} {Groups}},
journal = {Matemati\v{c}eskie zametki},
pages = {620--627},
publisher = {mathdoc},
volume = {94},
number = {4},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a11/}
}
A. R. Chekhlov. Torsion-Free Weakly Transitive $E$-Engel Abelian Groups. Matematičeskie zametki, Tome 94 (2013) no. 4, pp. 620-627. http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a11/