Approximation Methods in Optimal Control Problems for Nonlinear Infinite-Dimensional Systems
Matematičeskie zametki, Tome 94 (2013) no. 4, pp. 600-619
Voir la notice de l'article provenant de la source Math-Net.Ru
Some notions related to approximate solutions and to the approximation of extremum problems for nonlinear infinite-dimensional systems are proposed. Optimization problems for nonlinear parabolic equations with a fixed terminal state and on an infinite time interval, as well as for singular stationary systems with phase constraints, are illustrated by several examples.
Keywords:
optimization problem, nonlinear parabolic equation, approximate solution, phase constraint, fixed terminal state.
@article{MZM_2013_94_4_a10,
author = {S. Ya. Serovaǐskiǐ},
title = {Approximation {Methods} in {Optimal} {Control} {Problems} for {Nonlinear} {Infinite-Dimensional} {Systems}},
journal = {Matemati\v{c}eskie zametki},
pages = {600--619},
publisher = {mathdoc},
volume = {94},
number = {4},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a10/}
}
TY - JOUR AU - S. Ya. Serovaǐskiǐ TI - Approximation Methods in Optimal Control Problems for Nonlinear Infinite-Dimensional Systems JO - Matematičeskie zametki PY - 2013 SP - 600 EP - 619 VL - 94 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a10/ LA - ru ID - MZM_2013_94_4_a10 ER -
S. Ya. Serovaǐskiǐ. Approximation Methods in Optimal Control Problems for Nonlinear Infinite-Dimensional Systems. Matematičeskie zametki, Tome 94 (2013) no. 4, pp. 600-619. http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a10/