Approximation Methods in Optimal Control Problems for Nonlinear Infinite-Dimensional Systems
Matematičeskie zametki, Tome 94 (2013) no. 4, pp. 600-619

Voir la notice de l'article provenant de la source Math-Net.Ru

Some notions related to approximate solutions and to the approximation of extremum problems for nonlinear infinite-dimensional systems are proposed. Optimization problems for nonlinear parabolic equations with a fixed terminal state and on an infinite time interval, as well as for singular stationary systems with phase constraints, are illustrated by several examples.
Keywords: optimization problem, nonlinear parabolic equation, approximate solution, phase constraint, fixed terminal state.
@article{MZM_2013_94_4_a10,
     author = {S. Ya. Serovaǐskiǐ},
     title = {Approximation {Methods} in {Optimal} {Control} {Problems} for {Nonlinear} {Infinite-Dimensional} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {600--619},
     publisher = {mathdoc},
     volume = {94},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a10/}
}
TY  - JOUR
AU  - S. Ya. Serovaǐskiǐ
TI  - Approximation Methods in Optimal Control Problems for Nonlinear Infinite-Dimensional Systems
JO  - Matematičeskie zametki
PY  - 2013
SP  - 600
EP  - 619
VL  - 94
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a10/
LA  - ru
ID  - MZM_2013_94_4_a10
ER  - 
%0 Journal Article
%A S. Ya. Serovaǐskiǐ
%T Approximation Methods in Optimal Control Problems for Nonlinear Infinite-Dimensional Systems
%J Matematičeskie zametki
%D 2013
%P 600-619
%V 94
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a10/
%G ru
%F MZM_2013_94_4_a10
S. Ya. Serovaǐskiǐ. Approximation Methods in Optimal Control Problems for Nonlinear Infinite-Dimensional Systems. Matematičeskie zametki, Tome 94 (2013) no. 4, pp. 600-619. http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a10/