Reduction of the Calculus of Pseudodifferential Operators on a Noncompact Manifold to the Calculus on a Compact Manifold of Doubled Dimension
Matematičeskie zametki, Tome 94 (2013) no. 4, pp. 488-505.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the exposition of results announced in [1] We construct a reduction (following an idea of S. P. Novikov) of the calculus of pseudodifferential operators on Euclidean space $\mathbb{R}^{n}$ to a similar calculus in the space of sections of a one-dimensional fiber bundle $\xi$ on the $2n$-dimensional torus $\mathbb{T}^{2n}$. This reduction enables us to identify the Schwartz space on $\mathbb{R}^{n}$ with the space of smooth sections $\Gamma^{\infty}(T^{2n},\xi)$, compare the Sobolev norms on the corresponding spaces and pseudodifferential operators in them, and describe the class of elliptic operators that reduce to Fredholm operators in Sobolev norms. Thus, for a natural class of elliptic pseudodifferential operators on a noncompact manifold of $\mathbb{R}^n$, we construct an index formula in accordance with the classical Atya–Singer formula.
Keywords: pseudodifferential operator, Euclidean space $\mathbb{R}^{n}$, fiber bundle, space of sections, $2n$-dimensional torus $\mathbb{T}^{2n}$, Schwartz space, elliptic operator, Fredholm operator, Atya–Singer formula.
Mots-clés : Sobolev norm
@article{MZM_2013_94_4_a1,
     author = {A. A. Arutyunov and A. S. Mishchenko},
     title = {Reduction of the {Calculus} of {Pseudodifferential} {Operators} on a {Noncompact} {Manifold} to the {Calculus} on a {Compact} {Manifold} of {Doubled} {Dimension}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {488--505},
     publisher = {mathdoc},
     volume = {94},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a1/}
}
TY  - JOUR
AU  - A. A. Arutyunov
AU  - A. S. Mishchenko
TI  - Reduction of the Calculus of Pseudodifferential Operators on a Noncompact Manifold to the Calculus on a Compact Manifold of Doubled Dimension
JO  - Matematičeskie zametki
PY  - 2013
SP  - 488
EP  - 505
VL  - 94
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a1/
LA  - ru
ID  - MZM_2013_94_4_a1
ER  - 
%0 Journal Article
%A A. A. Arutyunov
%A A. S. Mishchenko
%T Reduction of the Calculus of Pseudodifferential Operators on a Noncompact Manifold to the Calculus on a Compact Manifold of Doubled Dimension
%J Matematičeskie zametki
%D 2013
%P 488-505
%V 94
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a1/
%G ru
%F MZM_2013_94_4_a1
A. A. Arutyunov; A. S. Mishchenko. Reduction of the Calculus of Pseudodifferential Operators on a Noncompact Manifold to the Calculus on a Compact Manifold of Doubled Dimension. Matematičeskie zametki, Tome 94 (2013) no. 4, pp. 488-505. http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a1/

[1] A. A. Arutyunov, A. S. Mischenko, “Reduktsiya PDO ischisleniya na nekompaktnom mnogoobrazii”, Dokl. RAN, 451:4 (2013), 1–5

[2] U. Rudin, Funktsionalnyi analiz, Mir, M., 1975 | MR | Zbl

[3] M. A. Shubin, Psevdodifferentsialnye operatory i spektralnaya teoriya, Dobrosvet, 2003 | MR | Zbl

[4] M. S. Agranovich, “Ellipticheskie operatory na zamknutykh mnogoobraziyakh”, Differentsialnye uravneniya s chastnymi proizvodnymi – 6, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 63, VINITI, M., 1990, 5–129 | MR | Zbl

[5] V. S. Rabinovich, “Apriornye otsenki i fredgolmovost odnogo klassa psevdodiffentsialnykh operatorov”, Matem. sb., 92(134):2(10) (1973), 195–208 | MR | Zbl

[6] A. S. Mischenko, Vektornye rassloeniya i ikh primeneniya, Nauka, M., 1984 | MR | Zbl

[7] V. E. Nazaikinskii, A. Yu. Savin, B. Yu. Sternin, Elliptic Theory and Noncommutative Geometry. Nonlocal Elliptic Operators, Oper. Theory Adv. Appl., 183, Birkhäuser Verlag, Basel, 2008 | MR | Zbl

[8] V. V. Grushin, “Psevdodifferentsialnye operatory v $\mathbf R^n$ s ogranichennymi simvolami”, Funkts. analiz i ego pril., 4:3 (1970), 37–50 | MR | Zbl