Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2013_94_4_a0, author = {K. Alymkulov and T. D. Asylbekov and S. F. Dolbeeva}, title = {Generalization of the {Boundary} {Function} {Method} for {Solving} {Boundary-Value} {Problems} for {Bisingularly} {Perturbed} {Second-Order} {Differential} {Equations}}, journal = {Matemati\v{c}eskie zametki}, pages = {483--487}, publisher = {mathdoc}, volume = {94}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a0/} }
TY - JOUR AU - K. Alymkulov AU - T. D. Asylbekov AU - S. F. Dolbeeva TI - Generalization of the Boundary Function Method for Solving Boundary-Value Problems for Bisingularly Perturbed Second-Order Differential Equations JO - Matematičeskie zametki PY - 2013 SP - 483 EP - 487 VL - 94 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a0/ LA - ru ID - MZM_2013_94_4_a0 ER -
%0 Journal Article %A K. Alymkulov %A T. D. Asylbekov %A S. F. Dolbeeva %T Generalization of the Boundary Function Method for Solving Boundary-Value Problems for Bisingularly Perturbed Second-Order Differential Equations %J Matematičeskie zametki %D 2013 %P 483-487 %V 94 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a0/ %G ru %F MZM_2013_94_4_a0
K. Alymkulov; T. D. Asylbekov; S. F. Dolbeeva. Generalization of the Boundary Function Method for Solving Boundary-Value Problems for Bisingularly Perturbed Second-Order Differential Equations. Matematičeskie zametki, Tome 94 (2013) no. 4, pp. 483-487. http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a0/
[1] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR | Zbl
[2] E. M. de Jager, F. Jiang, The Theory of Singular Perturbations, North-Holland Ser. Appl. Math. Mech., 42, North-Holland Publ., Amsterdam, 1996 | MR
[3] J. Hadamard, Le problème de Cauchy et les équations aux dérivées partielles linéares hyperboliques, Hermann, Paris, 1932 | Zbl
[4] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Aktualnye voprosy prikladnoi i vychislitelnoi matematiki, Vysshaya shkola, M., 1990 | MR | Zbl
[5] M. H. Protter, H. F. Weinberger, Maximum Principles in Differential Equations, Englewood Cliffs, NJ, Prentice-Hall, 1967 | MR | Zbl
[6] A. M. Ilin, A. R. Danilin, Asimptoticheskie metody v analize, Fizmatlit, M., 2009 | Zbl
[7] K. V. Emelyanov, “Ob asimptotike resheniya pervoi kraevoi zadachi dlya uravneniya $\varepsilon u''(x)+xa(x)u'(x)-b(x)u=f(x)$”, Primenenie metoda soglasovaniya asimptoticheskikh razlozhenii k kraevym zadacham dlya differentsialnykh uravnenii, Tr. In-ta matem. i mekh. UNTs AN SSSR, 28, Sverdlovsk, 1979, 5–14 | MR | Zbl
[8] K. Alymkulov, A. Z. Zulpukarov, “Ravnomernoe priblizhenie resheniya kraevoi zadachi singulyarno vozmuschennogo uravneniya vtorogo poryadka v sluchae, kogda nevozmuschennoe uravnenie imeet regulyarnuyu osobuyu tochku”, Issledovaniya po integro-differentsialnym uravneniyam, 33, AN KirgSSR, In-t matem., Bishkek, 1990, 118–122