The Gearhart--Pr\"uss Theorem for a Class of Degenerate Semigroups of Operators
Matematičeskie zametki, Tome 94 (2013) no. 3, pp. 426-440.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class of semigroups of operators in Hilbert space whose generators are linear relations. An analog of the Gearhart–Prüss theorem for semigroups of operators from the class under consideration is obtained.
Keywords: semigroups of operators in Hilbert space, Gearhart–Prüss theorem, linear relation, complex Hilbert space, infinitesimal operator, exponential dichotomy.
@article{MZM_2013_94_3_a9,
     author = {A. G. Chshiev},
     title = {The {Gearhart--Pr\"uss} {Theorem} for a {Class} of {Degenerate} {Semigroups} of {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {426--440},
     publisher = {mathdoc},
     volume = {94},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a9/}
}
TY  - JOUR
AU  - A. G. Chshiev
TI  - The Gearhart--Pr\"uss Theorem for a Class of Degenerate Semigroups of Operators
JO  - Matematičeskie zametki
PY  - 2013
SP  - 426
EP  - 440
VL  - 94
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a9/
LA  - ru
ID  - MZM_2013_94_3_a9
ER  - 
%0 Journal Article
%A A. G. Chshiev
%T The Gearhart--Pr\"uss Theorem for a Class of Degenerate Semigroups of Operators
%J Matematičeskie zametki
%D 2013
%P 426-440
%V 94
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a9/
%G ru
%F MZM_2013_94_3_a9
A. G. Chshiev. The Gearhart--Pr\"uss Theorem for a Class of Degenerate Semigroups of Operators. Matematičeskie zametki, Tome 94 (2013) no. 3, pp. 426-440. http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a9/

[1] E. Khille, R. Fillips, Funktsionalnyi analiz i polugruppy, IL, M., 1962 | MR | Zbl

[2] L. Gearhart, “Spectral theory for contraction semigroups on Hilbert space”, Trans. Amer. Math. Soc., 236 (1978), 385–394 | MR | Zbl

[3] J. Prüss, “On the spectrum of $C_0$-semigroups”, Trans. Amer. Math. Soc., 284:2 (1984), 847–857 | MR | Zbl

[4] K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Grad. Texts in Math., 184, Springer-Verlag, New York, 2000 | MR | Zbl

[5] A. G. Baskakov, K. I. Chernyshov, “Spektralnyi analiz lineinykh otnoshenii i vyrozhdennye polugruppy operatorov”, Matem. sb., 193:11 (2002), 3–42 | DOI | MR | Zbl

[6] A. G. Baskakov, “Lineinye otnosheniya kak generatory polugrupp operatorov”, Matem. zametki, 84:2 (2008), 175–192 | DOI | MR | Zbl

[7] A. G. Chshiev, “Ob usloviyakh zamknutosti i usloviyakh zamykaemosti infinitezimalnykh operatorov nekotorykh klassov polugrupp operatorov”, Izv. vuzov. Matem., 2011, no. 8, 77–85 | MR | Zbl

[8] A. G. Baskakov, Yu. N. Sintyaev, “Raznostnye operatory v issledovanii differentsialnykh operatorov: otsenki reshenii”, Differents. uravneniya, 46:2 (2010), 210–219 | MR | Zbl

[9] A. G. Baskakov, A. A. Vorobev, M. Yu. Romanova, “Giperbolicheskie polugruppy operatorov i uravnenie Lyapunova”, Matem. zametki, 89:2 (2011), 190–203 | DOI | MR | Zbl

[10] Yu. L. Daletskii, M. G. Krein, Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nelineinyi analiz i ego prilozheniya, Nauka, M., 1970 | MR | Zbl

[11] A. Baskakov, V. Obukhovskii, P. Zecca, “On solutions of differential inclusions in homogeneous spaces of functions”, J. Math. Anal. Appl., 324:2 (2006), 1310–1323 | DOI | MR | Zbl

[12] A. G. Baskakov, “Polugruppy raznostnykh operatorov v spektralnom analize lineinykh differentsialnykh operatorov”, Funkts. analiz i ego pril., 30:3 (1996), 1–11 | DOI | MR | Zbl

[13] A. G. Baskakov, A. I. Pastukhov, “Spektralnyi analiz operatora vzveshennogo sdviga s neogranichennymi operatornymi koeffitsientami”, Sib. matem. zhurn., 42:6 (2001), 1231–1243 | MR | Zbl

[14] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR | Zbl

[15] V. A. Trenogin, Funktsionalnyi analiz, Fizmatlit, M., 2002 | MR | Zbl

[16] C. van der Mee, Exponentially Dichotomous Operators and Applications, Oper. Theory Adv. Appl., 182, Birkhäuser Verlag, Basel, 2008 | MR | Zbl

[17] A. G. Baskakov, A. S. Zagorskii, “K spektralnoi teorii lineinykh otnoshenii na veschestvennykh banakhovykh prostranstvakh”, Matem. zametki, 81:1 (2007), 17–31 | DOI | MR | Zbl

[18] A. G. Baskakov, “Teoriya predstavlenii banakhovykh algebr, abelevykh grupp i polugrupp v spektralnom analize lineinykh operatorov”, Funktsionalnyi analiz, SMFN, 9, MAI, M., 2004, 3–151 | MR | Zbl

[19] A. G. Baskakov, “Spektralnyi analiz differentsialnykh operatorov s neogranichennymi operatornymi koeffitsientami, raznostnye otnosheniya i polugruppy raznostnykh otnoshenii”, Izv. RAN. Ser. matem., 73:2 (2009), 3–68 | DOI | MR | Zbl

[20] A. G. Baskakov, “Issledovanie lineinykh differentsialnykh uravnenii metodami spektralnoi teorii raznostnykh operatorov i lineinykh otnoshenii”, UMN, 68:1(409) (2013), 77–128 | DOI