Addition to the Popoviciu Theorem
Matematičeskie zametki, Tome 94 (2013) no. 3, pp. 416-425.

Voir la notice de l'article provenant de la source Math-Net.Ru

An asymptotic estimate of approximations of a function by Bernstein polynomials taking into account the position of the point on the closed interval is obtained.
Keywords: bounded function, Popoviciu theorem, Bernstein polynomial, continuous function, modulus of continuity.
@article{MZM_2013_94_3_a8,
     author = {V. O. Tonkov},
     title = {Addition to the {Popoviciu} {Theorem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {416--425},
     publisher = {mathdoc},
     volume = {94},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a8/}
}
TY  - JOUR
AU  - V. O. Tonkov
TI  - Addition to the Popoviciu Theorem
JO  - Matematičeskie zametki
PY  - 2013
SP  - 416
EP  - 425
VL  - 94
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a8/
LA  - ru
ID  - MZM_2013_94_3_a8
ER  - 
%0 Journal Article
%A V. O. Tonkov
%T Addition to the Popoviciu Theorem
%J Matematičeskie zametki
%D 2013
%P 416-425
%V 94
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a8/
%G ru
%F MZM_2013_94_3_a8
V. O. Tonkov. Addition to the Popoviciu Theorem. Matematičeskie zametki, Tome 94 (2013) no. 3, pp. 416-425. http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a8/

[1] T. Popoviciu, “Sur l'approximation des fonctions convexes d'ordre supérieur”, Mathematica Cluj, 10 (1935), 49–54 | Zbl

[2] I. P. Natanson, Konstruktivnaya teoriya funktsii, GITTL, M.–L., 1949 | MR | Zbl

[3] G. G. Lorentz, Bernstein Polynomials, Chelsea Publ., New York, 1986 | MR | Zbl

[4] P. C. Sikkema, “Der Wert einiger Konstanten in der Theorie der Approximation mit Bernstein-Polynomen”, Numer. Math., 3 (1961), 107–116 | DOI | MR | Zbl

[5] P. C. Sikkema, “Über den Grad der Approximation mit Bernstein-Polynomen”, Numer. Math., 1 (1959), 221–239 | DOI | MR | Zbl

[6] C. G. Esseen, “Über die asymptotisch beste Approximation stetiger Funktionen mit Hilfe von Bernstein-Polynomen”, Numer. Math., 2 (1960), 206–213 | DOI | MR | Zbl

[7] V. K. Dzyadyk, Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl

[8] M. Weba, “An optimal bound for the Bernstein approximation of multivariate Lipschitz-continuous functions”, East J. Approx., 12:4 (2006), 397–405 | MR

[9] S. A. Telyakovskii, “O skorosti priblizheniya funktsii mnogochlenami Bernshteina”, Tr. IMM UrO RAN, 14, no. 3, 2008, 162–169